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ABSTRACT 

This report discusses the autonomous orbit control system launched aboard 

the synchronous communications satellite LES-6 in late 1968. The topics 

presented include the motivation for automatic orbit control, the measure- 

ment techniques, observability and controllability, the design of a variable 

limit-cycle system, automatic station acquisition, simulation, and testing. 

The history of the development of this control system is emphasized, and 

the early flight results are discussed. 

Accepted for the Air Force 
Franklin C.  Hudson 
Chief,  Lincoln Laboratory Office 



CONTENTS 

Abstract 

[.    Introduction 1 

II.    Effects of Equatorial Ellipticity on Synchronous Orbits 5 

III. Simple Methods to Determine Near-Circular Orbits 8 

A. General Principles 8 

B. Application to Automatic Orbit Circularization 12 

IV. Observability and Controllability of Near-Circular Orbits 14 

A. The Continuous Case 14 

B. The Sampled Case 17 

C. Stable Control of the System with Daily Sampling 20 

V.    Analysis and Design of a Finite-State Controller 23 

A. Preliminaries 23 

B. System Analysis 25 

VI.    Realization,   Simulation,   and Testing of Flight System 35 

A. Logic Design of Controller 35 

B. Computer Simulation and Flight System Testing 38 

VII.    Early Flight Results and Coincidence Analysis 40 

VIII.    Conclusions 44 

References 46 

Appendix A — The Solar Time on an Arbitrarily Oriented Satellite 49 

Appendix B — The Observability and Controllability Matrices 
for the Sampled Case 53 

IV 



AUTOMATIC   ORBIT   CONTROL 

OF    THE    LINCOLN   EXPERIMENTAL   SATELLITE    LES-6 

I.      INTRODUCTION 

For- several years,   satellites have been used to establish radio communication links between 

stations   located on the surface of the earth.     Radio signals transmitted  by one station  are re- 
ceived by  the satellite,   amplified,   and retransmitted  to one or more terminal  points on  the 
ground.    Normally,   line-of-sight   transmission is   required,   so that   only those stations   which 

would be visible to a hypothetical observer on the satellite can be connected by this type of radio 
link. 

A major requirement for any communications system is that the link between stations be 

uninterrupted,   so that transmission of information between the terminals is possible at all times. 
This need has led to the introduction of "synchronous" satellites which revolve around the eartli 
at an average angular rate equal to that at. which the earth spins around its polar axis.    As is 
well known,   the orbital period of a satellite is related to its total energy,  which in turn is a func- 
tion of the orbital major axis.     By appropriately choosing the latter,   the satellite period can be 
made equal to one sidereal day.    Furthermore,   if the orbit is equatorial and circular,   the sat- 
ellite is geostationary,   or motionless,   relative to an observer on the earth.    It follows that one 
way of avoiding interruption of transmission due to the motion of the satellite with respect to the 
ground terminals is to place the spacecraft in a circular,   equatorial,   synchronous orbit. 

Unfortunately,  this ideal situation cannot be achieved permanently.    A synchronous satellite 
1-5 is subject to forces which tend to displace it from the geostationary position: a stable syn- 

chronous orbit exists at only two earth longitudes,   about 107° West (over the Pacific Ocean) and 
7 3°  East (over the Indian Ocean).    In general,   the satellite has a long-term pendular motion about 
the initial synchronous position,   which must be opposed by a thruster on the satellite.    On the 
first synchronous satellites,  the thruster was commanded by a signal from the ground,   after a 
difference between the actual and the desired satellite positions had been detected by tracking, 
until the desired drift velocity and position were obtained. 

A completely automatic and self-contained technique has been realized for the first time on 
the Lincoln Fxperimental Satellite LES-6,   a communications satellite that was launched success- 
fully on 26 September 1968.    In this system,   the angular position error is measured on the satel- 
lite itself and thrusters are fired according to a correction sequence determined by a digital con- 
troller on board.    This approach (a) eliminates tracking and commanding,   and (b) is potentially 
more accurate than the ground-command method.    The satellite can also be made to acquire new 

longitudinal positions by changing an internal reference,   so that it can follow new stations in a 
preprogrammed sequence or upon receipt of simple instructions from the ground. 

The use of an Automatic Orbit Control system significantly reduces the need for ground 
tracking.    We believe that this is a primary economic incentive to the use of these techniques in 
the future.    To appreciate the fact,   it is instructive to consider our own experience in determin- 
ing the orbit of LES-6,   using a 30-foot  UIIF antenna in Lexington,   Massachusetts.    The data re- 
corded by the ground station are satellite range,   obtained from the round-trip time of a signal 

sent through the satellite repeater,   and elevation and azimuth angles,   derived directly (and 
rather inaccurately) by pointing the antenna for maximum received signal.    These measurements, 
which last several minutes,  are repeated hourly for 30 consecutive hours and are then processed 



by an Orbit Determination Program,  which performs a least-square fit on the data to yield one 

value of satellite position and drift.    This orbit determination is thus a non-trivial burden,  which 

of course becomes more significant as the number of satellites to be tracked increases,   or when 
the ground station must be used for purposes other than satellite tracking.    Ground station sat- 

uration is,  therefore,   one of the problems that Automatic Orbit Control,   done directly from the 
satellite,   will alleviate. 

The second advantage of an Automatic Orbit Control system,   i.e.,  that of accuracy,   is still 
to be proven.    In fact,   one major aim in launching the LES-6 system has been to collect infor- 

mation that will enable us to design high-accuracy second generation systems.    Our goal on 
LES-6 was a rather modest ±2 degrees in steady-state longitude accuracy:   this is amply suffi- 
cient for earth-coverage microwave systems,   and is indeed very satisfactory,   as is known to 
those who have experience in synchronous satellite orbit control.    The longitudinal accuracy 
which can be achieved with ground tracking techniques depends on (a) the orbit determination 
accuracy,   and (b) the time interval between corrections.    The Syncom satellites,   for example, 
have achieved accuracies of 2 degrees,   with corrections about every 30 days.    If the orbit is 
measured and controlled directly from the satellite,   the constraints imposed on the correction 
interval by ground station limitations are removed.    Greater orbit control accuracy is important 
for satellites using narrow-beam,   i.e.,   high-gain,   antennas.    A second incentive for accurate 

longitude control is connected to the use of many synchronous satellites closely spaced in longi- 
tude:   in the future there will be a problem of allocation of "synchronous orbit space," especially 

in the neighborhood of some preferred longitudes.    In this report we discuss some preliminary 
statistical results obtained from sun and earth sensors. 

The work that is presented here refers to near-circular orbits,   and the flight data were col- 

lected from the synchronous equatorial satellite LES-6.    However,  these ideas,   and those which 
will develop from our own and others' experience,   will probably be applied to other types of or- 
bits.    Earth-resources satellites and large unmanned orbital platforms may become a reality. 

As the number of active satellites increases and improvements in solar power systems lengthen 
their useful lives,   on-board control of the orbit parameters will become increasingly important. 
The acceptance of automatic techniques depends,   of course,   on their reliability.    At the time of 
this writing,   the Automatic Orbit Control system of LES-6 had operated properly for eleven 
months.     During this time,   the Pulsed Plasma Thrusters operated for about 3,500 hours.    We 

hope to be able to demonstrate that the system can control the orbit automatically for several 
years. 

Automatic orbit control has not been attempted until now,   although self-contained methods 
have been proposed in the literature by several authors.    Some of these studies include applica- 
tions of filtering theory,   especially Kalman's,   to this problem.    The explanation of the delay in 
realization lies,   at least in part,   in the complexity of the orbit determination techniques which 
had been proposed until recently.    Reliability,   weight,   and power limitations have made all the 
systems proposed impractical for today's communications satellites. 

It is interesting to review briefly the development of self-contained navigation ideas,   which 
naturally center around the problem of determining the orbit from autonomous data.    A good gen- 

6 7 eral survey up to 1965 is made by Gansler, '    who considers the classic distinction between pre- 
liminary determination and updating of the orbit.'     The existing literature on the subject of 

t Gansler's evaluation of the characteristics of a "typical " self-contained navigation system, excluding the pro- 
pulsion equipment,  is that it will weigh 87 pounds and require 218 watts.    The LES-6 system weighs 4 pounds 
and uses 120 milliwatts. 



on-board orbit determination falls in three categories:   (a) discussions of instruments with which 
to observe satellite position and dynamic coordinates,   (b) elaborations of the orbit equations, 

(c) applications of filtering theory,   especially Kalman's.    The first group includes the many types 
of sensors,   star trackers,   inertial platforms,   and dynamometers which have been proposed but 

Q 

will not be discussed here.    The best paper in the second group is by Gersten and Schwarzbein, 
who give formulas for the orbital elements as a function of various combinations of measure- 
ments of satellite altitude,   anomaly,  and velocity components.    The difficulty is that the rela- 

tionships are transcendental equations which,   even if expressed in closed form,   require relatively 
sophisticated computation systems to obtain reasonable accuracy.    The same authors examined 

9 
some additional cases    in which intervals of time as well as dynamic coordinates are measured; 
they suggest that the equation of motion be solved repeatedly for different values of orbital major 

10 axis until the time measurements agree with the computed results.    McAllister and Wagner 
give the equations of motion for impulsive perturbations of the dynamic coordinates of a satellite 
in a circular orbit as a state transition matrix.    Several authors apply Kalman's statistical fil- 

11-20 13 tering theory to the determination of orbits.    Battin      also solved the problem of selecting 
14 the best star to use as a reference in making angular measurements.    Frazier,   et al.,      examined 

the possibility of approximating the values of satellite anomaly and the subtense of the principal 

body with polynomials in time and found that,   in general,   it is preferable to use the linearized 
form of the known dynamic equations to smooth the data,   leading to more complex data process- 

ing requirements. 
In 1965,   W. E. Morrow of Lincoln Laboratory proposed that a simple combination of sun 

and earth sensors could be used to determine the satellite "high-noon" position in orbit;  a stable 
oscillator could furnish an appropriate reference for the motion in sidereal space of any earth 
meridian,   and the correction for sun transit time effects could be performed digitally on board. 
Shortly thereafter,   the author,  while studying the problem of the automatic pointing of a com- 
munication antenna from a near-circular orbit to earth,   proposed simple methods of orbit deter- 

21 mination and reconstruction      which were particularly suited for implementation on a satellite. 
The present LES-6 Automatic Orbit Control system has evolved from these ideas. 

Section II of this report discusses the longitudinal perturbations of synchronous satellite 
orbits.    Section III deals with the orbit determination problem,   for small eccentricity orbits; 
solutions requiring linear combinations of times of flight are discussed.    Section IV examines 
the observability and controllability issues from the point of view of modern control theory. 
Section V describes the finite-state controller which was actually flown on LES-6 and discusses 
the automatic station-acquisition maneuver.    Section VI deals briefly with the hardware imple- 
mentation,  the simulation studies,  the choice of the integration routines and step size,  the ran- 
dom and deterministic error simulation,   and the testing of the flight system.    Section VII dis- 
cusses the dynamic behavior in orbit and several statistical hypotheses on sensor errors. 

II.     EFFECTS OF EQUATORIAL ELLIPTICITY ON SYNCHRONOUS ORBITS 

The influence of the asymmetries of the earth's gravitational potential on the motion of sat- 
ellites has been studied by several authors.    For equatorial synchronous satellites,   the most 

t -5 important effect is that due to the "equatorial eccentricity'"  which is of the order of 10     .    We 

t One should consider that this is simply a convenient way of interpreting the measured gravitational potential in 
the equatorial plane. In fact, for an eccentricity of 10 , the difference between major and minor semiaxes is 
only about 380 feet. 



SATELLITE collect here some of the important results,  fol- 

lowing mainly Ref. 1.    We further develop the 

"weak coupling" approximation and show it to 

be valid for the satellite motion sampled once 

per day. 

Stable synchronous orbits exist only at the 

two longitudes which correspond to the minor 

axis of the equatorial ellipse.    The longitudes 

along the major axis are unstable equilibrium 

f      points.    At all other longitudes,  the satellite is 

REFERENCE      subiect to a drift acceleration and its motion 
DIRECTION 

exhibits a long-term pendular motion,   depend- 

ent on the initial conditions,   about a stable point. 

According to recent determinations,   the minor 

axis is located at about 73° East.    Let r, A be 

defined as in Fig. 1,  and let 0 be the satellite 

colatitude.    Further,   R = mean equatorial ra- 

coefficient of the second zonal harmonic of the earth (which is related to 

the polar oblateness),   and y - ellipticity of the equator. 

The kinetic energy in a coordinate frame which rotates rigidly with the earth at angular 

speed  u)   is 

Fig. 1.    Reference system for elliptic earth 

dius of the earth,  J 

1-2,1     2A2   ,   1     2    .   2_ ,;    ,     .2 
T=jr    +   =-  r 9    +  T  

r    sin   9 (A + ai) (II-D 

and the potential energy can be written 
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We wish to find stationary solutions r = r  ,  A = A   ,0 = 9.    From Lagrange's equations, j 0 0 0 

dt  dqk c)qk 
(11-3) 

(where q,   is any of the dynamic coordinates r,  A,  9) follows,   for the stationary case, 

8 

and hence the equations 
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(11-5) 

(II-6) 



The last equation has the solutions 6=0 and rr/Z,   of which the last,   corresponding to equa- 

torial orbits,   is acceptable.    (This can be seen on physical grounds,  or by introducing the solu- 

tion 9    = 0 in the previous equations and checking that no solution exists for r  .)   Then,   from o I- -1 b o 

(II-5), stationary points are found to exist at longitudes 0, ir/2,   it,   (3/2) ir (measured from the ma- 

jor axis of t 

found from 

jor axis of the equatorial ellipse).    The values of r    which correspond to these solutions are 

r  o> 
o 

3M2
R 

3Tiiir 
~:,~ 4 2r 

(H-7) 

(the positive sign corresponds to the points on the ellipse major axis).    To discuss the stability 

of these solutions,  we write Lagrange's equations and linearize about the stationary points. 

The following three equations result easily: 

1 + 2n 
2    3 
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3jiJ,R 

2    5 oi   r 
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oj   r 
o , 

u)   r , — 2r  o)A , 
6 o      6 

o>  9, = 0 o 

(II-8) 

(II-9) 

(11-10) 

in which the subscript   6  indicates that the variables are variations around the stationary values. 

The third equation is decoupled from the first two.    The motion in 9  is harmonic with fre- 

quency ui/Zir,   i.e.,  with daily period,   given the orders of magnitude of the quantities involved. 

To discuss the stability of the other two coupled equations,  we find the eigenvalues of the 
3 

r     (this can be obtained 
o 

system,   in which we can make approximations remembering that n/u)' 

by equating the centrifugal and gravit 

y « 1.    Then the system reduces to 

by equating the centrifugal and gravitational accelerations in synchronous orbit) and that J    and 

3o)   r, — 2r  oiA , = 0 
6 o     o 

' & 
Zoo   • ••     ^ ,     / R \2     2, 

(11-11) 

(11-12) 

Using operator notation,  the equations for the system are 

2 2 (p    — 3o)   ) z .  - 2r   o)pz^ = 0 ,r 1 o   ^   2 

2o) ,   ,   2   .        2, n —   pz,   + (p    ± CO)   ) z    = 0 
o 

(11-13) 

(11-14) 

where c = 2y (R/r   )   ,   from which the eigenvalues are the solutions of the characteristic equation 

4  ,     2   2      ,      4      . p    + 0)   p    T 3co)     - 0 (11-15) 



-OJ    i u    \li ± 12c 

±3ca;    = ±6y (hr (11-16) 

The first solutions (±ju>) are oscillatory.    The second set implies instability when positive 

sign applies (major axis) and stability in the other case (minor axis).    The solutions then include 

a daily component (at frequency  w) and a slow oscillation with period 

^8 50 days 
R 

1 6.63 

^   VTTT^ 
By solving the system with appropriate initial conditions,   Blitzer,   et al.,   find that the trajectory 

in the rotating coordinate frame is a very elongated ellipse about the stable longitude.    The same 

study shows computer results for the complete (nonlinear) equations of motion.    Since that anal- 

ysis was made,  the observations of synchronous satellites have confirmed its validity.' 

It is interesting to discuss a further approximation to the system {(II — 8),   (II-9),   (11-10)], 

which we shall call "weak coupling" and which is very important for the applications.    If we as- 

sume vr small,   we can write o 

3ajr'i + 2r A'' 6 o  o 

2<x>   • *   , 

r        6 6 o ! *" © 2     2. * 
a   A , 

0 

From the first equation it is 

r6 2    X6 

(1I--17) 

(II -18) 

(11-49) 

This equation can be obtained from first principles,   namely,   from Kepler's third law.    It relates 

small changes in period to small changes in semimajor axis.    Taking the time derivative of 

(11-17) and substituting in (11-18), 

Xl   *6y ©2": 0 (11-20) 

Thus,  we have obtained a second-order equation in the variable XZ  which is decoupled from the 

equation in rZ and which has the correct long-term motion with frequencies ± N/6y (li/r   ) w in 

the stable case. 

One is then led to consider what happens if X . is sampled once a day,   i.e.,   if the daily com- 

ponent in the solutions is desregarded.    In order to check that indeed the variables A,,   rZ  of the 

weak-coupling approximation are the values of A„,   r. sampled once per day,  we can proceed as 

follows. 

The general solution for the linearized system [Eqs. (11-11) and (11-12)] in the stable case is 

obtained easily 

t It must be noted that luni-solar perturbations alter this picture by effectively changing the synchronous semi- 
major axis.    Closed orbits no longer exist even at the "stable" points. 
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(11-22) 

Let us consider only the values at times t = nT  ,   where Tg  = ZTT/UI,   n -  0, 1, 2,. 

we can select the initial value (that  is to say,   the phase of the sampling) so that 

A, - A„ = 0 

In particular, 

(II-23) 
1 2 

Consider then the values of r.,   r.,   and A . at the sampling times,   which we indicate with a star 
oo o 

(11-24) 
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(11-25) 

(11-26) 

2   * 
r,  is of Remembering the definition of  a,  we obtain that u;   r'. and OJA"; are of order spy,   while 

_ oo 
order {\[y)    and therefore negligible in (11-8).    Thus,   we can conclude that if one uses as var- 

iables the radius and the geocentric longitude observed once per day,   one can study the satellite 

drift  in a neighborhood of the minor axis from the simple decoupled Lqs. (II -19) and (11-20). 

The previous equations and conclusions apply to motion in a neighborhood of the stationary 

points.     It  is important  to establish the weak-coupling approximation for all values of longitude A. 

Let  us linearize about  the values r    and all derivatives equal zero,  treating A   as a finite quan- 

tity.    Then Kq.(II-R)  remains unchanged,   while (II-9) becomes 

,,2 
r,  4 A   4   LtlL.   sin2A = 0 

o 5 
r 

o 

(11-27) 

an equation which is nonlinear in  A.     Let  us consider linearized solutions to the previous equa- 

tion.     For A =• A    we can write 
o 

r. — 3w   r, — 2r  wA. = 0 
6 6 o      6 

    r^  + ** r        o        o 
o 

IH5-   sinZA 
5 o 

(11-28) 

(11-29) 

The characteristic equation is found easily, 

4 2   2      . p    + co   p     - 0 (11-30) 

and the general solution is 
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Thus the longitude sampled once per day satisfies the differential equation 

,2 3y|dK sin 2A 0 

o 

(II-311 

(11-32) 

(11-33) 

(11-34) 

We can write the general solution to (11-27) by letting the coefficients of the linearized solu- 

tion,   Eq. (11-31),   be functions of time: 

X*(t) = \)Q f D^t) •   t + D2(t) •   t 

where the coefficients D.(t),   L)_(t) are determined by choosing different values for A   . 12 o 
can conclude that the weak-coupling approximation is valid for the nonlinear equation 

X*(t)- 
3yiiK sin2A" = 0 

(11-35) 

Then we 

(11-36) 

This is tlie well-known "pendulum equation" of elementary dynamics.    Kor small excursions 

of X*  the linearized approximation,   leading to parabolic motion,   Eq. (11-33),   can be used.    As 

we shall see,  the pendulum equation is very useful in practice,   since the motion of the satellite 

is thus reduced to a one-dimensional problem.    The radius vector is still given by (11-19)-    It can 

further be shown    that considering the higher-order tesseral harmonics does not essentially 

modify these conclusions. 

ni.   SIMPLE METHODS TO DETERMINE NEAR-CIRCULAR ORBITS 

A.    General Principles 

Since elliptic orbits can be described by any set of sufficient parameters,   we wish to use 

parameters which are most easily measured with on-board instrumentation.    The orbit can then 

be controlled by maintaining these parameters at a reference value:   the computation problem, 

and the measurement and control problems are treated as a whole.    The desired control accu- 

racy determines the precision necessary in the measurement and in the computations,   and this 

in turn affects the choice of the technique of orbit determination.    The methods summarized here 

only require linear combinations of measured times of flight.    The results are obtained from 

well-known expansions of the law of motion in terms of the orbital eccentricity   e  to terms of the 

third order.    Several properties of the second-order solution,   which are of great practical inter- 

est,   are discussed.    These techniques can also be applied to the determination of the center of 
21 the earth from the satellite      and to circularize an orbit automatically,   as seen in the following. 



Since,  as we have seen,  the out-of-plane perturbations of the motion of the satellite' are de- 
coupled from the motion in the orbit plane,  we study plane motion only. 

The instrumentation needed for the measurements consists of an earth sensor,  a sun or star 
sensor,   and a clock.    The earth sensor must determine the direction of the center of the earth, 

2 3-25 or local vertical,  and can be an infrared or optical sensor. If an optical sensor is used, 
electronic processing of its output is necessary to correct for the variation of apparent width of 
the earth as the earth-satellite-sun angle changes.    The sensor is relatively simple if the orbit 
is nearly circular,   so tnat the earth's angular subtense varies little in time,  and if the semimajor 
axis equals a few earth radii.    The determination of the local vertical when these two conditions 
are not satisfied requires more sophisticated sensors.    The difficulty of this measurement per- 
mits one to state that the precision of orbit determination from the satellite is at present essen- 

tially determined by the accuracy with which the local vertical can be established.    Several types 
of sun and star sensors have been used or proposed,  the latter being potentially more accurate, 

but more complex than the former.    Star sensors are generally used in a continuous tracking 
mode,   rather than discontinuously on spinning satellites.    The advantages of using star trackers 
are that the angular subtense of stars is much smaller than the sun's and that for all practical 

purposes they can be considered a true inertial reference.    The clock,   a very accurate and stable 

oscillator,  in general uses a temperature-controlled quartz crystal;  long-term stability of one 
part in 10 million can be obtained on today's satellites. 

The planes of sight of both the earth and sun sensors are typically perpendicular to the or- 
bital plane,   contain the spin axis of the satellite,  and form an angle  6.    As the satellite spins, 
the   sun and  earth  sensors  deliver  two  trains 

SUN     \ 
OR 

STAR 

of pulses which in general do not occur at the 
same time. However, for any given orbit, an- 
gular separation of the sensors, and position of 
the sun, there is one point P in orbit at which 
the pulse trains from the two sensors are in 
phase (Fig. 2). If another sun sensor is used 
together with the earth sensor, at an angular 

separation 6', a second point P' can be estab- 

lished in orbit. Alternatively, one could use 
two earth sensors and one sun sensor. Thus 
each combination of three sensors is an orbital 
angle finder, which together with a clock can 

measure the time in which the satellite sweeps 
A 

the known angle PEP'.    If the sun,   rather than 
a star, is used as a reference, its angular mo- 

tion relative to the orbit must be taken into account.    In the case of an elliptic orbit,   the argu- 
ment (or angular coordinate) of the points  P and P',   relative to perigee,   changes day by day 
because the projection of the sun line on the orbital plane moves with yearly period and because 
of perigee precession.    The orbital angle finder and the clock,   in measuring the time of flight of 
the satellite between points in orbit,   essentially measure the average angular velocity of the sat- 

ellite as it sweeps angles of known width. 

Fig. 2.    Measurement of times of flight. 

t It is well known that the orbital plane of an earth satellite is perturbed mainly by luni-solar effects and by the 
spherical harmonics in the geopotential.    The magnitude of these perturbations depends on the orbit considered. 
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Expanding the law of motion      in powers of the eccentricity  e, 

wt = e -9Q - 2e [sin(e) - sin(e  )] + I f2 [sin (26) -sin (26  )] (III-1) 

where 6 = satellite argument measured from perigee,   a> = orbital radian frequency 6=6   for 

t = 0. 

APOGEE 

Fig. 3.    Measurement points 

for orbit reconstruction. 

Consider the times in which the satellite sweeps three consecutive 90° sectors in orbit,   de- 

fined by points P.,   P?,   P,,  and P. (Fig. 3),  and let 6   be the argument at P..    The satellite 

therefore moves from P. to P_ in a time interval t,  such that 12 1 

ut. y - 2e [sin (6    + j ) - sin (6  )] +  | e2 [sin (26    + ir) - sin (26  )] (1II-2) 

Writing similarly the time intervals t?,   t., in which the satellite travels from P- to P., and P, to 

P.,   respectively,  and taking linear combinations of the equations,  one finds the (first-order) 

parameters: 

e sin(6o) =  ~ [w(t1  + t2 ) - TT] 

e cos(6o) = - [TT- w(t2 + t3)] 

(III-3) 

(III-4) 

The quantities u>,   e sin (6  ),   e cos (6  ) can be used as sufficient parameters,   from which 

e    cos (26  ) can be determined.    However,   since this computation is not easily implemented, 
2 ° 

e    sin (26  ) are considered additional (second-order) parameters for the equation of motion;   this 

is legitimate,   since enough independent measurements of times of flight can be made. 

To obtain the second-order parameters independently,   the time t*   in which the satellite 

travels at 45° sector from P. to P' (Fig. 3) is measured,  being 

3     2 
wt*   = \ - 2e [sin(6o + f)- sin(9o)] - |  e    [cos (26J- sin(26o)] (HI-5) 

Using this result and the previous equations,   after some simplifications,   the reconstruction of 

the law of motion in terms of these measurements is 

lo 



•t -   \\\ -(t2 + t3)] sin(cot) + | [(t1   f t2) - ^] •  [cos(ait) - 1] 

12 

3^2f        + i  t    + JL+2f t 
4 12    2 4 3 

-  r^ -(t1 + t3)] [cos(2ojt) - i; 

t* - sin (2o.'t) 

(III-6) 

to third order in   c .    This expression involves only weighed sums and differences of the times 

of flight,   as coefficients of the harmonic terms. 

Some simple properties of the second-order reconstruction of the orbit are of practical in- 

terest because satellites are often placed in circular orbits around the principal body.     Heturn- 
2 

ing to (I1I-2) and dropping the terms in t   , 

(  sin {& ) -   — u.-(t_ o        4 2 V cos(e ) = — o.'(t. 
o        4 1 V (III-7) 

whicli arc more compact forms of (III-3) and (III-4) for the second-order case. These expres- 

sions can be used to rewrite (III-6) for this case. The orbit reconst ruction is now particularly 

simple,   being 

e 
t - | (tj -t_) sin(wt) + j (t, -1,) [1 -cos(wt) (III-8) 

An interesting second-order property is that the times t',   t" in which the satellite sweeps 

any two angles,   botli of width AG and opposed with respect to the focus are,  to second order' in   i, 

(III-9) cot' = AG - 2e   [sin(G    + AQ) - sin(G  ) o o 

wt" AG   + Z(   [sin(G    + AG) -sin(G  ) 1 o o 

and,  therefore, 

T  = 7T (t' + t")/AG 

(111-10) 

(111-11) 

This equation provides alternate ways of measuring the period for quasi-circular orbits and is 

particularly simple if AG  is an integer fraction of a revolution.    To second order- in  t ,   clear-k- 

it is also 

(CJ'  4 v") (HI-12) 

where OJ ' and co " are instantaneous angular- velocities at two points in orbit opposed with respect 

to the focus. 

As lias been seen,  the initial condition on the orbit is established by observing the time of 

coincidence of the outputs of a sun or star sensor- and an earth sensor.     If the sun is used as a 

reference,   the on-board clock must be a solar clock,   i.e.,   it must keep into account the variation 

of the transit time of the sun over a meridian of the satellite.    If the orbital reconstruction is 

done on a day-by-day basis,   it is sufficient for some applications to consider the mean sun mo- 

tion,   thus,   one can use a constant-speed clock and correct for the mean sun motion either in car- 

rying out  the computation or by altering the angular- distance of the sensors on the satellite by an 

appropriate amount.     If,   on the other hand,   the initial conditions in each orbit must be accurately 

known for- several  years   (e.g.,   for- stationkeeping),   it is necessary to use a true solar clock. 

l 1 



which can be implemented electronically.    When the satellite spins about an axis which is not 

parallel to the earth's,  the satellite's true solar time differs from the earth's (see Appendix A). 

In determining the initial conditions on elliptic orbits for many consecutive days,   one must 

consider- the motion of the line apsides,  which causes the point of coincidence between sensor 

outputs to move day by day along the orbit.    Furthermore,   if the sun is used as a reference,   the 

point of coincidence moves with the projection of the sun line along the orbit.    Thus,   if the time 

coincidence occurs at point P    on the first orbit,   it occurs at P  , P  , . . . Pn on successive orbits. 

Then,   the n-th coincidence will occur at a time 

t    = nT + At (a>  ,9 ) n v   n'   o' 

Even though a true solar time is used,   the fact that the angle cp    is traveled on an elliptic orbit 

is cause of a measurement error-.    The error varies as 

6 - 2f sin(</5   ) (i-ad) 

to second order in  < . 

If the measurement is continued for- a year- or more,   so that c/>    varies from 0 to 27r,   the 

peak-to-peak error is 6 ~ 228 c   (deg). 

A simple way of eliminating this measurement error to second order in  t   is then to repeat 

the determination of the initial condition twice per- orbit at two points 180° apart and to take the 

arithmetic average of the two determinations^   This technique should be employed also when a 

star tracker is used in the orbital goniometer to eliminate the effect of apsidal line motion. 

B.    Application to Automatic Orbit Circularization 

As an application of these ideas,   we shall describe a system that would automatically reduce 

€*    The controller is of the null-seeking type,   requires little computation on the satellite,   and 

l   F   -F 
4   P    e 

Fig. 4.    Automatic circularization 
IF   (F .     . 
4   P     e      technique. 

3-83-1046-1"! 

does not  interact with the control of the satellite daily longitude.    The orbital position is meas- 

ured at points P.,   P      P  ,   P      90° apart (Fig. 4),   with a system of angle-finders of the type 

which has been described previously.    Pet t .,   1       t   ,   and t    be the times in which the satellite 

t U.S. Patent Application 643493, filed 5 June 1967. 

t This system has not been implemented on LES-6. 
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moves along four consecutive 90° sectors.    Instead of computing the argument of apogee,   the 

quadrant in which apogee is located with respect to the measured positions can be determined by 

noting that when t.   = max t. (i -  1, 2, 3, 4),   apogee is between P,   and Ph + j,   with the convention 

that li + 1 =  1 for h = 4.     In the boundary case,  t . > t? = t..,   apogee is at P.,   and similar relations 

hold when apogee is at P      P      and P        Thus,   the position of apogee is determined qualitatively 

without computations,   using only comparisons of times of flight. 

The longitude (stationkeeping) control thrust is applied symmetrically about the orbital focus 

so that the eccentricity is not modified.'    For convenience,   if F    is the impulsive stationkeeping 

control thrust along the orbit tangent,   1/4 F    shall be applied four times per orbit,   at points P, 

through P ..    To change the orbital eccentricity without affecting the satellite period,   the net 

tangential force applied during one orbit must be zero.    A control action +F    is applied,   at each 

of the two fix points which encompass apogee,   followed by an action —F    at the two points encom- 

passing perigee.    This system of forces ±F    tends to circularize the orbit and does not modify 
23 e 

the satellite period.        In Hie boundary cases,  the control action is modified simply.    The time 

comparisons are repeated,   and the corrective action -fcF    is applied until t. = t,   (i, h      1, 2, 3, 4), 
er-i- in 

within the limits of accuracy of the sensors.    F    can be designed to satisfy fuel constraints or 

oilier requirements.     If Hie stationkeeping corrections  F    and the circularizing correction ±F 
P *- 

are superimposed,  the system of forces shown in Fig. 4 results. 

To determine the precision of this technique,   the differences between times of flight are 

written to second order in  e 

«|t4 -t2| = 4e| cos(eo)|       , 

oj |t_ -t   | = 4e | sin(e  )|       . (111-13) 

The control system operates to reduce the measured differences to zero,   or 

w(t1 -t2) + ax -<JZ      0       , 

w(t. - t   ) + u2 -a    --   0       , (III-14) 

where a. is the angular error made in measuring the corresponding 90°  sector. 

If a. is further written as 
I 

a. = ff.    + a        ,       i     0, 1, 2 
11 

i.e.,   as the sum of a zero-mean and a systematic component,   it follows that this control tech- 

nique is insensitive to systematic angle errors.    It  is interesting to see what e _ one would have 

from a constant measurement error a,  —a       a? — (7, = a.    Then from (111-14), 

a      4(1 cos(e  ) I       ,       a * 4(    I sin(6   )I i' o  ' r ' o  ' 

(in rad).   or 

a/8~ 

t This statement is proved in Sec. IV. 
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IV.   OBSERVABILITY AND CONTROLLABILITY OF NEAR-CIRCULAR ORBITS 

In this section, the dynamic problem of perturbations of near-circular orbits is discussed 

from the point  of view of modern control theory.    The problem of observability and controllability 
27-29 has been studied by several authors independently. R. Brockett's results are the most com- 

plete and are used in parts A and B of this section.    In part C,  we discuss the meaning of the 

loss of controllability which occurs when the orbit equations are sampled once per day.    We show 

that the symmetric thrusting policy which was discussed in Sec. Ill does not change the orbital 

eccentricity.    This,   together wilh a constraint which is shown to exist between the uncontrolled 

variables,   permits us to show that this thrust policy leads to a Liapunov-stable system (i.e.,   one 

in which the uncontrolled variables cannot exceed a bound,   which is proportional lo the initial 

eccentricity).    Thus we prove the feasibility of controlling the satellite longitude using observa- 

tions appropriately made once per orbital period,   and reconcile the classical approach presented 

in Sees. II and III and the point of view of modern control theory. 

A.    The Continuous Case 

Let us consider the orbit equations in the case in which a small acceleration u is imparted 

to the satellite by on-board thrusters. If we call u u , u, the three components along the dy- 

namic coordinates  r,   r X,   r 9,   the linearized equations of motion [(II — 8),   (11-9),   (ll-10)| become 

,    2 3a)   r, 2r  o)X _ 
o      6 

r  A.  + 2w   r, 
o   o o  o 

:• 9. +  r   c 
o   o o 

(IV-1) 

(IV-2) 

(IV-3) 

where we have considered the spherical components of the earth's potential only,   since we can 

superimpose the perturbations as long as the linearized equations hold. 

Taking as variables x. 
6' 

form of the resulting differential equation is 

x(t) - Ax(t)  +  Hu 

with 

r Xx, o  6 
{H  =   r  X 4 o   o S        o  o       6 o   6 the  matrix 

(lV-4) 

i) 1 0 

0 0 1 

0 ii 

0 (i 

0 [) 

0 0 

0 1 

2 
u 0 

(IV-5) 
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and 

B 

0 0 0 

0 0 

0 0 0 

0 1 0 

0 0 0 

0 0 1 

One can solve the equation by  Laplace transformation and find with easy steps: 

(IV-6) 

2w 
2  ,     2 s     f w i   2 2, 

s(s      + Ul    ) 

-2OJ 3CJ 

? ? 
s(s     !  w) 2,   2   ,      2. 

s   (s     + OJ    ) 

2   ,      2 
S       +•  O) 

(IV-7) 

The natural response of Kq. (1V -4) with initial values x(0)  is given,   in the lime domain,   by 

(IV-8) x(t)      e-lx(0) 

Kt where e—   is a n x n matrix, 

e—   - I.     (Is - A)      -•  -—:   \     (Is — A)     e     ds 
~~ 27T.1    Jp     - — 

(IV-9) 

J_ being the identity matrix and   T'   a contour enclosing all the eigenvalues of (]s —A).    After some 

straightforward but lengthy calculations one obtains 

4       1 cos u.' l{\       eosul) 

6(-wt + sinul)       -liil--coslJ"       1       (-l"t +4sinMU 

6QJ(    1  t  ros wt) -2 smut 0 ( -3 M coswt) 

(sin wt) 

-oj sin uit cos u,'t 

(1Y-10) 
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The solution of the forced equation 

x(t) = Ax(t) + Bu(t) 

is given by 

•>t 
t*\        A(t)  /„,   ,   f     A(t-cr) r,  I   ^ i(t) - e—v   x(0) + \    e—v Ru(o-) dff 

(IV-11) 

(IV-12) 

Lei us consider now the observability of the linearized,  near-circular equations of motion 

in the continuous case.    Since the last two equations in (IV-4) are decoupled from the others,  we 

can treat them separately. 

As is well known,  we must determine the rank of the matrix 

L = (C,CA , CAn_1) 

whose rows are the rows of C,  CA,   etc.,   where C_x is the observed vector.    If we observe the 

radius x.  only, 

C. - (4, 0, 0,0) 

and 

L, 

0 0 

0 10 0 

3OJ 0 0 2c 

-co 0 0 

(IV-13) 

Since rank [I..] =  3 and the state vector  x   is of dimension 4,   the system is not observable by 

measuring radius (or- its derivative) only. 

Now consider looking at the 9  dependent variable x        Here we have 

c2 = (0, 0, i, 0) 

and 

0 1 

0 0 

-2co 0 

0 0 -4co 

(IV-14) 

This matrix is of rank 4 so the system is observable from x 

K, 



For the last equation we have 

1      0 

0     1 

(IV-15) 

which is nonsingular and therefore ensures the observability of x_ and x,. 
Let us now consider the controllability of the system described by Eq. (IV-4),   which is de- 

cided by considering the matrix 

K = (IB, AB, . . . , An_1 IB) 

If we control from u.  (radial thrust alone), 

*i 

•u) 0 

0 0 -2w 0 

0        -2w 2(J0 

(IV-16) 

Since the rank of this matrix is only   3,   control from u.  is not possible. 
In the case where u.  is zero and u    is the control,   the  K  matrix takes the form 

K2 

2 03 

4w 

• 2OJ ' 

4co 

(IV-17) 

This matrix is of rank 4 and hence the system is controllable from u? alone.    Thus we see that if 
only one thrust component is to be used it should be tangential to the orbit. 

For the last two equations we have 

^3 

0     1 

1      0 

which is clearly nonsingular.     Hence u, can control the out-of-plane motion. 

(IV-18) 

B.     The Sampled Case 

As we have seen in Sec. Ill, simple combinations of sensors permit us to establish points, or 
fixes, in the orbit. Thus we are interested in examining what happens to the orbit equations when 
they are sampled once,   twice,   and four times per orbit.    We also assume that the control  u   is 
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applied only at the sampling times.    Then_u(kT) is the magnitude of the impulse applied at (kT). 

Thus the system is described by the difference equation [from (IV-12)], 

x(kT + T) = e-(T,x(kT) + e-(T,Bu(kT) (IV-19) 

where T = sampling period = 27r/ku;,   (k = 1, 2, 4).    The transition matrices for the various cases 
A(t) are easily obtained from the expression of e—      (IV-10).    These are: 

i.       For T = 27r/u: 

1 0     0       0 0     0 

0 10       0 0     0 

127T 0     1 —- 0     0 

0 0     0        1 0     0 

0 0     0        0 10 

0 0     0        0 0     1 

r        -i 

xi 

X2 

x3 

X4 

X5 

x6 
L      J 

Tk+T) 

"1 

xl 

X2 

X3 

X4 

X5 

X6 

kT) + 

0 0 0 

1 0 0 

0 
— bir 

it) 
0 

0 1 0 

0 0 0 

0       0        1 

(kT) (IV-20) 

ii.       For T = 7r/a 

(kT+T)= 

0        0 4 0 0 

10        0 0        0 

bir          1             0 0 
<x> CO 

12w      0       0 0 0 

0 0        0        0-1 

0 0        0        0 0 

- 
xl 

X2 

x3 

X4 

X5 

x6 
L       J 

(kT) + 

0 w 0 

1 0 0 

-4 - 3TT 
0 

0 -7 0 

0 0 0 

0 0 

(kT) 

(IV-21) 
iii.       For T = TT/ZU: 

• 

xl 

X2 

X3 

X4 

X5 

x6 
L            J 

(kT+T) = 

•1 
1 

0 2 
w 

3a; 0 0 2 

3TT t 6 2 
1 

(-37T + 8) 
2aj 

- 6aj -2 0 - 3 

0 0 0 0 

i) 0 0 0 

n 

0 i) xl 

0 0 X2 

0 0 X3 

0 0 X4 

I) 
! 

CO 
xs 

- OJ 0 X6 

x(kT) t- 

2 

-37T i-8) 

2ci) 

-3 

0 

0 

u(kT) 

(IV-22) 



The z-transform of the responses can be obtained from these transfer matrices. Alterna- 

tively, one can start from the Laplace transfer function (IV-7), and find its z-transform for the 

appropriate value of T. 

Using a tilda to indicate z-transform functions,   one obtains easily: 

i.       For T   = 27r/oj: 

o 

+ 67TZ 

0)(z -   1) 

• 

ul 

"2 

U3 
L      -1 

(IV-23) 

ii.       For T  = 7r/aj: 

•4z 

o>(z 

4z 

oi(z 

+ 37TZ 

0)(Z-  1) 
(IV-24) 

iii.       For T =  ir/2c 

2 
z    + 1 

•2z(z + 1 

w(z - 1) (z    + 1) 

2_ z(z + 1) 
w  (z- 1) (z2 + 1) 

z [(8 - 3rr) Z' 

2co(z    + 1) (z 

I6z + (8 - 3ir)] 
T 

1 I 

(z2 + i: 

(IV-25) 

The test for observability and controllability is of the same form as for the continuous case. 

However,  the  A_ and   B  matrices must be replaced by the matrices in Eqs. (IV-20),   (IV-21), 

(IV-22) for the different cases.    The results of the calculations are given in Appendix B and 

summarized in Table I. 

It is interesting to note at this point that the techniques of orbit reconstruction discussed in 

Sec. Ill satisfy the observability test.    The flight times between points in orbit depend both on 

radius and angle information,   as is readily verified.    Four measurements of times along the or- 

bit are sufficient for complete observability. 
30 Some recent work      has addressed itself to the problem of finding optimal solutions (in a 

least-square sense) to near-circular orbit control.    For optimum control theory to be really 
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TABLE  1 

SUMMARY OF CONTROLLABILITY AND OBSERVABILITY PROPERTIES 
OF THE  LINEARIZED ORBITAL EQUATIONS 

Observing (In-plane) 

Measurements per Orbit 
Continuous 

Measurement One Two Four 

Radial observations No No No No 
Tangential observations No No Yes Yes 
Radial and tangential No Yes Yes Yes 

Control  (in-plane) 

Radial thrust No No No No 
Tangential thrust No No Yes Yes 
Radial and tangential No Yes Yes Yes 

Observing (out-of-plane) 

Orbit normal observation No No Yes Yes 

Control  (out-of-plane) 

No No Yes Yes Orbit normal thrust 

useful,  the system must be completely observable and controllable.    Thus I. B. Chammas' study 
deals with the cases which are completely controllable and observable (see Table 1).    The cost 

function which is minimized is 

no 
q   -   \       (u'u  + o-y'y y)dt 

where  y  is a linear transformation of the measured vector  x.    The author studies the cases in 
which (1) a   is finite and large and a = 0,   for which he finds a time-varying optimal control,   and 

(2) a — •*> and tv  =£   0,   for which he finds a constant control law. 
The optimal control laws depend on all components of the measurement vector  x.    While the 

instrumentation presently available does not allow us to conveniently measure x    nor x.,,   it is 
nonetheless instructive to consider the optimal control policies as performance bench-marks. 
Future   study should also focus on performance criteria of the type 

q -  \      (|u| +- ay'y) dt 
o 

and constraints of the type 

"O 
r u    dt < L 

C.    Stable Control of the System with Daily Sampling 

It is important now to examine the exact meaning of the lack of controllability of the dynamic 
equations in the case of one sampling per orbit.     It is seen from (1V-23) that the longitudinal 
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coordinate x, is controllable,   while x,  is not.    The question therefore arises as to whether it is 
possible for x    to grow without bound when x, only is controlled.    Physically,   this would corre- 
spond to the orbit becoming increasingly elliptical,   while the orbit semimajor axis remains 
constant,   as required by the fact that x, is controlled.    We shall prove that the double thrusting 
policy which was introduced in Sec. Ill has the property that the orbital eccentricity remains 
constant and equal to its initial value. 

From the z-transfer matrix (IV-23),   the transfer function between x, (the longitudinal co- 

ordinate) and u? (tangential thrusting) is 

~ 67T7. ~ ,,,,   ,/. x, =   ^    u?       ' (IV-26) 
to(z — 1) 

which corresponds to a double integrator.    Thus x, is controllable.    But controllability of the 

longitudinal coordinate sampled once per day means that x, can be driven to zero.    This in turn 

implies that the orbital period and therefore,   by Kepler's third law,   the semimajor axis of the 
orbit can be made constant. 

It is easy to show that for linear expansions of the orbital motion the semimajor axis equals 
the average of the radius over one orbit.'    Then the semimajor axis must be x.  + r    and an ex- 
pression for the average over one orbit of x. is found from the transition equation [see (IV-10)], 

x.  = (4 - 3 coswt) x.(0) +  - sinajt x_(0) +  — (1 - coswt) x.(0)      , (IV-27) 
1 1 w L CO 4 

and thus 

xi = 4x^0) +  |  x4(0)      . (IV-28) 

If we drive x, to zero,   x,  must equal zero,   so that the semimajor axis equals r  .    Then on suc- 
cessive samplings the uncontrolled coordinate x.  is constrained by the equation 

2*1  + h   *4 = °      ' (IV-29) 

Thus,   as was expected on physical grounds,   the values of x. and x. are not independent when x, 
is controlled to zero. 

Consider now what happens if one samples x,  so that its value equals x..    Then Eq. (IV-28) 
becomes 

3x,  + -  x. = 0      , (IV- 30) 
1      OJ     4 

which is the relationship that was established in Sec. II when sampling was performed in such a 
manner as to eliminate the daily variation in r. and r. [see Kq. (11-19)]. 

In Sec. Ill we had established that the daily motion (eccentricity dependent) was eliminated 
if one observed once per orbit by taking the average of two observations at intervals 7r/ui.    Also, 
it was claimed that splitting the thrust value (determined once per orbit) in two equal parts ap- 
plied at 7r/oj intervals maintained the orbital eccentricity at a constant value.    To check this,   we 
use again the transition matrix (IV-10) and find immediately that the new observable 

x^ =  |[x3(0) f x3(^)] (IV-31) 

t In general, the semimajor axis differs from the time average of the radius taken during one orbit (see,  for 

example,  Ref.26). 
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does not contain any orbit periodic components.    This new observable is thus the mean longitudinal 

position. 

To find the effect of symmetric thrusting at TT/OJ intervals on the eccentricity  e,   we note that 

max        o 1 max 1 min 

o o 0 

Thus for the eccentricity to be constant it must be x 

From the transition matrix it is easily 
1 max 

constant. 

(IV-32) 

x, = 4x,(0) +• - x.(0) 4 1 max 1 to     4 

x2(0,l2 2 2 (IV-33) 

Since we control x,,   it is because of (IV-29) 

1 max 

x   (0)i2 , , 
-~r\     M3xl(0» + |x.!(0)j2 IV-34) 

From the sampled equations for T = 7r/o; (IV-20) used with the constraint u?(kT + T) = u_(kT) for 

k  even,   one has easily 

(kT + 2T) 

0        0 

0 1 0 

0        0 1 

- 
xl 

X2 

X4 
L       J 

(kT)    t uE(kT) IV- 3S) 

which yields 

x,(kT + 2T) = x2(kT) (IV- 36) 

and 

x.lkT  •  2T) - x,(kT) f  -   u,(kT 1 1 co      2 

x4(kT + 2T) = x4(kT) -6 u2(kT) 

(IV- 57) 

( [V- 58) 

Since x?  remains unchanged and so does the quantity 

2 
3x.   t   — x,    Itrom the last two equations), i       w     4 i . 

the eccentricity remains unchanged because of (IV-32) and (IV-34).    Thus we have shown that, 

when x. is controlled by thrusting equally at points 180" apart in orbit,   the eccentricity is nol 

changed.    ('sing the eccentricity as a parameter,   if the sampling is done so that x?      0,   one has 

from (IV-34),   (IV-32),  and (IV- 29), 

x.  - —e r 1 o 

x . = 2 OJ e r 4 o 

(IV- $9) 

(IV-40) 

lor this control policy. 
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To conclude, we have shown how it is possible to control the longitudinal motion of the satel- 

lite by sampling once per orbit. The radius is uncontrollable, but constrained to the value of the 

longitudinal drift rate by Eq. (IV-29). Equation (11-9), established for an appropriate value of the 

sampling phase,   was found again to be valid.    It was shown how it is possible to ensure that the 

eccentricity remain constant and thus that x,(t) and x_(t) be bounded,   x,  = — e r  ,   and x ,= 2u e r   . •' 12 1 o 4 o 

V.     ANALYSIS AND DESIGN OF A  FINITE-STATE  CONTROLLER 

A.     Preliminaries 

Section V describes the design of the controller which was actually flown in LES-6.    The de- 

sign is based on the assumption that only satellite angular position can be measured with the in- 

strumentation available.    At the time of this design,   it was assumed that daily angular drifts of 

fractions of a degree per day could not be measured in practice.    A preliminary estimate of 

sensor errors,   solar clock errors,   and the coupling of orientation errors into position errors 

led to the conclusion that satellite position would not be measured more accurately than about 

2 degrees peak-to-peak over long periods of time,   with an rms value of 1.3 degrees.     It was thus 

established that longitude would be measured in a quantized manner and the .smallest quantization 

window was set at 2 degrees. 

It was also decided, on the basis of the 

analysis of Sees. Ill and IV, that we would sam- 

ple once per day and observe only the mean 

daily longitudinal position. Further, it was 

decided that the daily observation would con- 

sist of the average of two observations made 

at opposite points in orbit (with respect to the 

earth center), to decouple the observation from 

the daily (eccentricity dependent) motion. Fi- 

nally, it was decided to thrust symmetrically 

with respect to the earth center, so that ec- 

centricity, although not controlled, would not 

increase,   as discussed in Sec. IV (see Fig. 5). 

Since drift velocity was not directly meas- 

urable, damping of the motion could be a- 

chieved by observing the transitions of the sat- 

ellite into adjacent two-degree-wide longitude 

bands. This suggested a finite-stale machine 

realization of the controller. 

The  thrusters   available on  the   satellite 

are of two types: cold-gas thrusters and pulsed 
- S 2 plasma   thrusters.     The gas thrusters provide a   linear aeeel era tion ol  about  0.5S X  10       m/sec 

and the plasma thrusters about 0.95 X 10      m/sec   .'    These figures are to be compared to the 
- 7 lineai' acceleration caused by the earth's equatorial ellipticity which is at most 0.545 x 10      m/sec 

Thus it was decided that the plasma thrusters would be used only for steady-state tracking,   since 

their maximum effect (in continuous operation) is only about twice the disturbing acceleration at 

SUN SENSOR 1 

SPIN 

SUN  SENSOR I 

ORBIT 

Fig. 5.    Measurement of sate I lite position on LES-6. 

t Both figures keep into account the duty-cycle of operarion of the system. 
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the worst earth longitude.    The need to operate with two widely different thrusters posed an ad- 

ditional constraint on the design of the controller.    The gas thruster system was,   however,   con- 
sidered the primary system,   since there has been no previous flight experience with the plasma 

thrusters.    As discussed in Sec. VIII,  these were indeed extremely successful and have been used 

exclusively,  up to the time of this writing,  for steady-state station tracking. 

The orbit control system of LES-6 has the following modes of operation: 

Command Mode:—   Either the gas or plasma thrusters can be operated on command 

from the ground.    The earth direction and the firing angles (with respect to the orbit tangent) are 

determined by using on-board sensors.    The thrusters shut off automatically after predetermined 

time intervals,   which can be selected from the ground. 

Automatic Mode:—   Operation is completely self-contained with either thruster system. 
Two modes are available,  with automatic switchover:    (1) new station acquisition,  and (2) station 

tracking,   with self-contained damping of the relative motion. 

In all modes,   thrust is applied to the satellite in the direction of the orbit tangent,   which for 
a circular orbit is normal to the satellite-earth line,  determined by an earth sensor.    Total im- 
pulses of different values are obtained by firing the thrusters for a fixed part of each of several 
rotations,  the spin rate being measured by sun sensors. 

The satellite position is determined using the combination of sun and earth sensors described 
in Sec. III.    Sun sensors were preferred to star sensors because of their simplicity and rugged- 
ness.    The position of the satellite must then be compared with the position of the ground station 
at a given time.    Since any earth meridian moves at a constant angular speed in space (disregard- 
ing small secular changes of earth rotation rate),   an on-board clock can determine the position 
of a station of known longitude.    The clock delivers a pulse every 12 hours:    the time difference 
between a clock pulse and the sensor coincidence pulse is then a direct measurement of the longi- 

tude displacement.    The fact that the satellite position is measured with respect to the sun pro- 
jection on the orbit plane requires that the clock be a  "true solar clock," which should indicate 

the transit time of the sun at the desired earth 
longitude (see Appendix A).    This transit time 
(ephemeris) displacement is shown in fig. f> 
for the year 1969;   secular changes can be dis- 
regarded for satellites having a lifetime of a 
few years.    If the spin axis is normal to the 
orbit and the orbit is equatorial,   the true solar 
time of the earth station can be compared di- 

rectly with the position or coincidence pulse de- 
Fig. 6.    Sun transit time displacement for 1969. Livered by the sensor system.    A high-precis ion 

oscillator and counter deliver a pulse every mean solar day,   which is advanced or retarded elec- 

tronically in accordance with the day of the year* (see Sec. VII).    Alternatively,   a "mean solar 
clock" can be used if the position of the satellite is measured with a special sun sensor* or a star 

tracker.    Spin axis misalignment causes a position error,   whose worst-case magnitude during a 

,9. 
t For a satellite lifetime of 5 years,  clock accuracy of about 1 part in 10    is necessary. 

t U.S.   Patent Application 643493,  filed 5 June 1967. 

24 



year is ±0.55° of longitude per degree of misalignment for a satellite such as LES-6 (see Ap- 

pendix A and Kef. 31). 

Automatic acquisition of new stations,   i.e.,   new earth longitudes,   is based on the fact that 

the time of arrival of the daily pulse from the internal clock determines the stationkeeping longi- 

tude.    If satellite position is measured at the 9 a.m.   position in orbit (point H in Fig. 5),   the con- 

trol system maintains synchronism with that earth station whose true solar time is 9 a.m.   at 

the time of arrival of the internal clock pulse.    Therefore,   new stations are selected automat- 

ically by changing the phase of the internal pulse,   i.e.,   by resetting the clock with a command 

when the true solar time of the desired station is 9 a.m.    Station changes could be completely 

automatic if the time of occurrence of the reset pulse were preprogrammed on the satellite. 

After acquisition,   the satellite can stationkeep at any geocentric longitude,   which implies 

bidirectional control action,   since the disturbing force changes sign in accordance with Fq. (11-36) 

and its motion is constrained to a band around the station,   whose width is determined by the 

measurement accuracy.    A sequential damping procedure,   designed to use fuel with high effi- 

ciency,   ensures the convergence to this band. 

The most important performance parameters are fuel consumption (both in steady state and 

in damping),   the settling time after acquisition,   sensitivity to measurement errors,   the time 

necessary to acquire a new station,   and the number of possible station changes. 

B.    System Analysis (Ref. 32) 

In this section we use the "weak-coupling" approximation that was established in Sees. Ill 

and IV.    The relevant equations are repeated here,   with the definition of constants necessary for 

the applications.    Variables are sampled once per day,   but the star notation is dropped for 

simplicity. 

The geopotential perturbation is given by (11-36), 

A,, ~ - 1. 54 x 10~ 3 sin2(A - A   ) deg/day2       , (V-l) 1.1 o 

where A    -73° east longitude is the position of the minor axis of the geopotential ellipse.    The 

change in radius is related to the angular drift velocity by (11-19), 

(V-2) 
T_6 = _2   A(deg/day) 
r    '       3 360" o 

where r    = synchronous radius  -42,165km. 

The effect of the thrusters is obtained by computing the total change in linear velocity per 

day Av ,,   knowing the thrust level,   the mass of the satellite,   and the time during which the 

thrusters operate.    For small Av ,,   the daily angular acceleration caused by the thrusters is ob- 

tained from the laws of orbital motion, 

Av , 
A     =-3X360°   --"-5- (deg/day   )       , (V-3) 

o 

where v    = synchronous linear velocity  ~ 3,300m/sec.    The total angular acceleration is 

therefore 

A = A(.  f AT      . (V-4) 
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A convenient approximate representation of the effect of the geopotential is obtained using 

lotential 

integration, 

a "potential energy function" V  ,   dependent on the satellite longitude sampled once per day.     My 

V„(X) = -   \      X„dX = -4. 4 x 10 2 cos2(X - X   ) (deg/day)2      , (V-5) 
O 

o 

recalling the necessary transformation from radians to degrees. The thruster is designed to 

produce a very small change of orbital angular velocity per day. If the satellite drift per day 

remains small, firing the thruster every day for a fixed time results in a constant daily change 

of mean drift rate, i.e., a constant mean drift acceleration. If, furthermore, the firing time 

per orbit is made to depend only on the satellite mean daily longitude, the thruster-imparted ac- 

celeration is sensibly conservative, and a second "potential energy function" V• can describe 

the longitude caused by the thruster. The satellite drift motion can therefore be studied in an 

approximate but expressive way with the aid of a "total potential energy function" in the mean 

relative satellite longitude  A   measured once per day. 

In the system discussed here,   X   is quantized in steps of magnitude AM.     The daily thruster 

impulse takes on two different values,   I' between AM and 2AM or— AM and -2AM,   and I" else- 

where for   |x | < L.    The direction of thrust is such as to cause the satellite to drift toward the 

station.'    The resulting potential energy function is shown qualitatively in Fig. 7. 

POTENTIAL  ENERGY 

I 

5   K- 

-2 0 2 
RELATIVE   LONGITUDE 

t 
STATION 

TRACKING  MODE 

ALk O 
,    2 

Fig. 7.    Qualitative behavior of the potential 
energy function. 

Fig. 8.    Switched damping technique. 

If,   for example,   the satellite were initially at M    with no drift velocity,   it would oscillate 

between L    and  M'   .     Damping is therefore necessary and is accomplished in "damping bands" 

A  and   A' .   AM wide about the station,   as seen in Fig. 8.    When the satellite is in  A,   a daily im- 

pulse is applied if the satellite has entered  A  by crossing the zero (station) line,   and no impulse 

is applied if it lias entered from   B.    A similar firing strategy is used when the satellite is in  A'. 

f Notice that an increase in instantaneous orbital velocity increases the semimajor axis and the period,  thus 
actually slowing down the satellite with respect to the station. 
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Consider,   as an,example,   the behavior of a satellite starting at P,  with.no drift velocity,   as- T''j • ffc-        (fiiHJ.i      fi-jiiiooclqisiD   )!)!)}]   •   i     •"••  up'arj ->i~' lo noi.nnin K ;•   "     Itjq 
suming for simplicity that V    =0.    The satellite would be accelerated by,the thrusters and reach b r        J e ii  i'   u       :•.'."!.'   [qn f   ! i -,•• ii riuDis aril ti . n-.i . 
the station with kinetic energy (in the variable X) equal to V.. .  No impulse would be applied in 

A',   but upon entering A,   a; darnping impulse would ,be called fo,r once^er day,   so that,in band  A 

the kinetic energy of the satellite would decrease by AV (,Fig> 8).    Thu£ the, satellite would only 

reach P, instead of P',   invert its motion,   and enter A   from   13.    No impulse would therefore be 

applied until the satellite crossed from A to' A\.   'In each complete oscillation^  the energy de- 

creases by 2AV until the satellite remains in bands  A  or  A'.    As seen in the following,   the 

damping impulse is changed adaptively to reduce the residual relative kinetic energy to very   ; 

small values.    I' and I" are made large enough so that there is a potential energy minimum in 

a neighborhood of the station for any station longitude and a stable equilibrium point occurs within 

±AL from the station. •> <   >n 

1.      Station Acquisition Mode 

The automatic system enters the station acquisition mode when its longitude differs from 

the station's by more than ±L degrees.    L  is made sufficiently large so that this event only oc- 

curs as a consequence of a station change.    Redundancy techniques are used to avoid spurious 

transitions into the acquisition mode.    The thruster immediately fires for a fixed length of time 

at opposite points of the orbit,   causing the satellite to drift toward the station.    When the de- 

sired geocentric longitude is reached,   the satellite returns to near synchronous orbit by firing 

the thruster in the same manner in the opposite direction.    Having completed the homing firing 

sequence,   the system switches to the station-tracking mode.    As a result of orbit perturbations 

during the transfer between stations,   in general at the beginning of tracking mode operation the 

satellite has a residual drift velocity relative to the new station,   which must be damped. 

If X     is  the  drift  rate  impressed  on the o ' 
satellite   at  the   beginning   of the   acquisition 

mode,   then within  the limits of approximation 

of (V-l) the   energy conservation  theorems in 

the  variables  X  and  X  can be written as for a 

point  mass  whose  motion were  described  by 

this  equation.     Prom   (V-5)   and   Fig. 9,     for 

acquisition   of   any   station  it  must  be  \ X     *>. 

AV„ = 8.8 x 10~2 (deg/day)2, or X    >. 0.42 G max 6/     J o ' 
deg/day. Then let X = 0.42 k deg/day, where 

k > 1 is a coefficient which determines the ac- 

quisition speed. If the relative drift velocity 

imparted by the thrusters is i deg/day per 

sec of thruster operation, the thruster on- 

time for acquisition is T. = 0.42 k/i sec. The 

drift velocity must vary by the same amount 

twice because there must be two equal and op- 

posite   impulses.     If  the  fuel   consumption  is 

1 i 
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KINETIC ENERGY 
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> 
o 
UJ KINETIC 
UJ ENE RGY 
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EXTERNAL ^-"""X 

AV, max 

'    POTENTIAL  ENERGY    \ 

1-/        1 1                   1 V_i  s ». 
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t t 
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AXIS 

OF EARTH'S   EQUATOR 

Fig. 9.    Kinetic energy for the transfer between orbits. 

rh, gm/sec,   the fuel required per station acquisition is mf     = 0.84 m. k/i.    Notice that the in- 

• 2 equality X   /Z iA\ .. need be satisfied only for transfers between the minor anil the major 1 J    o'     '       (• max 
axis of the earth's equator.    One could compute on board the minimum value of the acquisition 
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impulse as a function of the required longitude displacement,  using (V-5),   and fire the thruster 

accordingly,   if the additional complexity were justified. 

The speed of station acquisition can be derived by integrating (V-l) with initial condition 

A = A    for various longitudes of the old and the new station.    To obtain results in closed form, o b 

(V-5) can be approximated,   dropping the phase term G ,   by 

VG(A) 4.4 x 10"2 (l - lj A2\   (deg/day)2 (V-6) 
' IT I 

for — 7r/4 ^ A ^ TT/4,  where A  must be expressed in radians.    This second-order approximation 

to cos 2A is in error by 5 percent at A = TT/8.    The worst case for a 90° transfer is clearly that 

in which the old station is on the minor axis of the earth's equatorial ellipse and the new station 

is on the major axis (Fig. 9).    The initial kinetic energy becomes 

V = 8.8 x 10"2k2 (deg/day)2       . (V-7) 

? 2      2 
Defining  |   = 2k    — 16(A   /it   ),   the kinetic energy during the first half of the trajectory is.   refer- 

ring to Fig. 9, 

V (G) = 4.4 x 10"2 t       , (V-8) 

and therefore expressing the velocity in rad/day, 

i 

A = •• (0.2977r/lf 10) £2 ' 

The time to travel an angle of 45° is then 

h 
180        ( 

"   0.297*   _ 

->ir/4 

1. f 
i 

"2 dA 

whic :h int egrates to 

u 
_1 

= 152 sin (2_i k" ) days 

(V-9) 

(V-10) 

(V-ll) 

Similarly,   in the second half of the trajectory, 

Ve(A) = 4.4 X 10"2   [2k2 - 2   t i|  (A-i)2]        , (V-12) 

and defining 

4   = Z* (k2- lF/[2k2- 1)2"  - 1]       , (V-13) 

t2   =152 log^ days       , (V-14) 

and the worst-case time for a 90° transfer is 

tw(90°) = tt  + t2 days       . (V-15) 

The worst-case acquisition time for transfers smaller than 90" occurs when the new and the old 

station are located symmetrically with respect to the 45° longitude (Fig. 9) and can be calculated 

easily witli the previous procedure.    The acquisition time for 180° transfer between any two posi- 

tions is clearly twice t     (90°).    The best-case 90° transfer occurs when the old station is on the 

major axis and the new station is on the minor axis. 
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2.      Fuel Consumption in Steady State 

The optimum steady-state condition,   from the point of view of fuel consumption,   would be 
one in which a constant acceleration were applied to the satellite to equal the tangential drift 

acceleration at the satellite geocentric longitude.    This ideal situation cannot be achieved because 
perfect damping is not possible in practical controllers.    As will be seen later,   the damping im- 
pulse is reduced adaptively to a small value I    during the damping maneuver.    After the controller 
has reached the last value of I  ,   either the impulse in A  and  A' of Fig. 8 is reduced to zero (first n ° 
system),   or the impulse remains at the value I    but the switching is discontinued (second system). 

a.    First System 

No impulse is applied in the damping band after damping has been completed.    The potential 
configuration in this case is shown in Fig. 10.    The longitude interval 4AL is sufficiently small 
so that the external acceleration given by (V-l) can be considered constant.    Impulses  fl1 and — I' 
are applied in opposite directions on the sides of the   damping band.    For a daily impulse   1  the 

Fig. 10.    Potential energy for the first systen 

energy acquired by the satellite in traveling AX degrees is V = IAX (deg/day)   .    Fet F    be the 
maximum value of f    and define a    = I  /F   ,   and cv ' = i'/F   .    Since the satellite must remain e n       n     e e 
within ±AF of the origin after damping,   a ' must be greater than one.    At the end of the damping, 

the satellite has at most residual energy 

V R 
(I    + f   ) AL n       e (V-16) 

This worst-case situation occurs if the satellite reaches point   B  in Fig. 10 with zero velocity. 

If this does not occur,   the satellite exits from the damping band and the damping cycle continues. 
In general,   the satellite velocity will be zero at some point internal to the damping band,   in 
which case the residual energy is smaller than V.,.    The damping cycle ends at the origin,   since 
the satellite longitude is measured in steps of width AL.    The relative kinetic energy is zero at 
P_,   where the potential energy is,   with the reference of Fig. 10, 
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V  (P,) = VR + f    AL = (I    + 2f  ) AIu,t>  Au; U.      i rir,i.jq,'tu;-fu- > (V-17) 

'111 Jloi.lOI     .     ,-:'-'   '    : I   'jg    ,','    j ..'    ,        Ifli      1   •       '.,."     I T-.       • '!',    •!.-     I    ,   . I ' 
From simple geometric considerations,   the position P    is defined by 

i l "i 11 I ,  in • •:•. i    I'U I i;n!''i Dt   irilJ-i)/;'d    nil    i.) h'Hiq'is ';-t'i.'   ;i     M'i _>!•, i-,i; jr:fi.t:    •   ,        I   i I'VV n  

V^ + Zf^AL/lI'-.f,,)    .  .      ih( i(i|  ,?. . tJ .      (V-18) 

'ijiemehtary considerations on the equation of motion for a constant'acceleration field yield that 
• i •;•! i'; /     .•1'ivii'iii nicrni i:h   >'\l ^ni'vii     I    nj I       11J.• •• i i U • lu:i 

at time 
;••;••  i.-. •  :.'.••...: 

!vt^ ^  (Zx'^/d'-^)-   AA/(I'-fe)       ,    ' I  MM (V-19) 

where A..  is the drift velocity with which the satellite passes at A (Fig. 10), 
A 

X.  = [2(1    + 2f   ) ALp       . (V-20) 
An e 

• 

The travel time between A and  B  is 

where 

'AB^A^E^e      • (V"21! 

\B = (ZIftAL')2       , (V-22) 

The velocity at P, is zero,  and therefore 

tfi = XB/(I' - fe)      • (V-23) 

Since this cycle repeats itself,   the fuel consumption per second is proportional to 

Q(1) = (tA + tB)/(tA + tAB + tB)      . (V-24) 

By using (V-17),   (V-18),   (V-22),   (V-24),   and letting A - A    =6in(V-l),   the expression for the 

steady-state fuel consumption when stationkeeping at any position in orbit is obtained: 

n\ f-i + £? 
Q*   J = a'F     -1-—— s r       , (V-25) 

e [a    + 2 I sin 26 I F  - a ~z~ 
fl  ff2+   — " 1        l |sin26 | 
i I 

where t    = (a    + 2  | sin 26 |) 2 /( a' — \ sin 26 |) and t    - a2 /(tv'  -t   |sin 26 |).     My taking the limit 

for sin26 — 0,   the steady-state fuel consumption for f    = 0 is found: 

Q(1) = 2F  a   /(l +2a   /a')      . (V-26) o e   n' n' 

b.    Second System 

The last damping impulse 1    is retained in the part of the damping band where it was last 

applied.    The potential configuration for this system is shown in Fig. 11.    The residual energy is 

again given by (V-16).    The same procedure used before yields the steady-state fuel consumption 

for this system: 

,(2) 
ff'£l  + aJh 

Q("' = F i «—* 1        , (V-27) 
(a     + 2   | sin 26 | H  - £, 

1 3 sin26 

$0 
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Fig. 11.    Potential energy for the second system. 
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where £, = [a     +   | sin 26 | )2,   and the limit for sin26 -* 0 is 

Q(2) = 2a   F  /(1.5 + a   /a') o n   e' n' (V-28) 

Comparison of the Two Systems 

^Q^for^f Comparing Eqs. (V-26) and (V-28) yields Q It has been seen that o o 
a' must exceed unity to ensure the existence of a potential minimum in a neighborhood of the 

station.    Also,   a    must be less than unity to make the residual energy V„ small.    In general, 
this inequality is satisfied and the second system is preferable when f    = 0.    For instance,   for 

a ' = 2 and a _ i_ 
n Q (i: 0 

0.4 F    and Q(2) = 0.308 F   . e o e 
the external force is zero or sufficiently small.    As a    -* 0,  Q      /Q       ~* f . 

^(1) = 1.27 F    and Q(2) = 1.16 F e e force is maximum,   i.e.,    |sin26|  = 1,   then Q 

The second system is superior when 

When the external 
Therefore,   the 

second system consumes less fuel also when the force is maximum.    Notice that when a    -* 0, 
Q      and Q      tend to f ,   i. e.,   the systems tend to a minimum fuel system in which the impulse 
per orbit applied by the motor equals the acceleration per orbit due to the external force.    It is 
therefore possible to conclude that: 

(1) The second system is superior. 
(2) The impulse I1 = a' Fe should be the smallest compatible with the 

requirement of being sufficiently greater than Fe to give some safety 
margin.    A good value is approximately a' = 2,  the final selection 
being made on the basis of convenience in the electronic implementation. 

(3) The impulse In in the last step of the damping cycle should be as small 
as possible. 

3.      Active Damping 

After the satellite has acquired a station,   its kinetic energy is decreased by an active 
damping system.    A first requirement is to have a high potential wall (Fig. 7) which makes it 
impossible for the satellite to return to the station acquisition mode.    This determines the width 
L  of the tracking band and the impulse level between +AL and — L,   since it must be,   from (V-5), 
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9 
VT   ^0.088 (deg/day)  ,   where VT   is the potential energy at a longitude ±L from the station. 

Letting  h be the number of longitude subdivisions of width AL in which the applied impulse has 

the value   I",   and defining a" similarly to  a', 

VT   = (a' + a" h) F AL J; 0.088 (deg/day)2      . (V-29) 
\-i e 

Since AL is chosen on the basis of measurement errors and of system requirements,  and a' was 

obtained previously,   Eq. (V-29) determines the product   a" h. 

To obtain a small residual value of the drift velocity at the end of the damping process,   it 

is necessary either to measure the satellite drift velocity accurately or to reduce the damping 

impulse adaptively.    In the first case,  the residual drift velocity is determined by the measure- 

ment accuracy;   in the second,  by the smallest value of damping force which can be used in 

practice.^   The latter approach,   which leads to a sequential design of the controller,  was taken 

because of the difficulty of measuring drift velocities. 

Two damping systems will be compared,   in which successive values of the damping impulse 

obey a relationship of the type 

I,   = ±1 a"k      ,       a > 1       , (V-30) k o ' 

and the sign is chosen so as to oppose the drift velocity.    The two systems differ in the manner 

in which the transition from I,   to I, , . occurs: k k + 1 

(a) Zero Crossing Adaptation:    The transition from Ij^ to Ij^ occurs at each 
zero crossing,   i.e.,   each time the measured position of the satellite 
passes from region A  to  A1 in Fig. 8,   or vice versa. 

(b) Convergence Adaptation:    The transition from 1^ to Ij^+i occurs each time 
the satellite converges to the band ± AL around the station.    In general, 
several zero crossings can occur before convergence. 

In studying both systems,   the initial kinetic energy will be taken to equal V.   from (V-29) for 

a' = 2,   a" = 6,   and h = 6.    The following analysis is therefore a worst-case study of convergence 

time.    Two definitions are useful in the study of the active damping system.    The convergence 

time is the time after which the total energy (in the X variable) VT   remains below a small value 

VR which is the residual energy toward which the system is designed to converge.    The damping 

efficiency is the ratio of the initial kinetic energy (in the  A  variable) of the satellite to the energy 

(in the  \  variable) expended by the thruster in getting the total energy below V... 

Zero Crossing Adaptation:—   In this system,   the damping impulse is divided by a 

factor a > 1 every time the satellite passes through zero.    After  k  half oscillations of the sys- 

tem,   the total energy is 

k-1 
_   •     TT     AT 

k      VL V.   = VT  - a   F  AL   X    a   '      ,       k $. 1 (V- ii ) 

i=0 

where a   F    is the initial damping impulse.    The sequence is ended when 

V    < a   a"nF  AL     , (V-32) n        o e 

t Energy is coupled into the system by errors in determining the boundaries of longitude bands, as discussed in 
the following. 
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n-1 

VT  - a   F  AL    Y.    a"1 < a  a"nF  AL      . (V-33) L        o   e LJ o e 
i=0 

Using (V-29) and executing the summation in (V-33),   rearranging and letting a      = e,   the condi- 

tion for convergence is 

a    > 38(a- 1 )/(a - e)      . (V-34) 

When this condition is not satisfied,   the rate of decrease of the damping impulse is too great in 

relation to that at which energy is subtracted from the system,  and convergence does not occur. 

If a    can be increased sufficiently,   inequality (V-34) can always be satisfied.     However,   the 

initial damping force a    cannot be arbitrarily large.    The operation of the adaptive damping sys- 

tem will eventually be limited by the accuracy of the longitude measurement,   since a longitude 

error <5L in establishing the boundary of the damping band causes a variation of the potential 

energy of the system 

6V - a   F  6L      . (V-35) o   e 

Requiring that 6V be smaller than some percentage   ?j of V. ,   an upper bound for a    is determined; 

e.g.,   for 6L = 0.25° and 77  =2%,   a    4 6.    Using this condition in (V-34),   a ^ 1.19 - 6E/32.    Ob- 

viously,   operating with these low values of a  is not very efficient.    The energy expended by the 

active damper on the satellite is 

i) 

W = 2V,   + 2V,  + . . . + 2V    = 2VT   + 2    T.     V. (V-36) L 1 n L u       k 
k=l 

or,   from (V- 31), 

W = 2(n + 1) V,  - 2a     ii£L_Lii F  AL + 2o     (-^—r)
2 (1 - a"(n + 1 ') F  AL      . (V-37) L o    a — 1        e o   a — i e 

Kor example,   if e = l/32,  which is a reasonable value to have a sufficiently small I   ,   n ~ 19- 

With the values n = 19,   a    - 6,   V.   = 38 F  AL,   and a = 1.18,   the damping efficiency,   from (V-37), 

is 77     = 0.085. 

Convergence Adaptation:—   In this type of damping controller,   a.   is retained until 

the satellite is trapped in the damping band ± AL wide around the origin.    In the rest of this sec- 

tion,   the most efficient damping sequence is determined for dampers of the second type.    Con- 

sider a damping sequence in which V    = V   a     ,   a > 1.    The first convergence is obtained after 

N    half-cycles of satellite position.    From the previous definitions and for VT   =  38 F  AL.   the o J r r L e 
energy expended during this first phase is 

W'  = 2V.   + 2(V.   - V   ) + 2(V,   - 2V   ) + +2 |V,   - (N    - 1) V   ] L L        o L o L o o1 

= 2N VT   - N (N   - 1) V        . (V-38) o   L        o    o o 

After the first convergence,   the number  N  of half-cycles of satellite position necessary to obtain 

each successive partial convergence obviously is the smallest integer > (a — 1).    The energy W" 

expended is then,   for a >2, 
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n-1 

W" = 2N    T.    V. = 2Na(a- l)"1 (1-e ) V . (V-39) LJ       l o 
i = 0 

The lowest value of W" is obtained for a = 2.    Since the energy W is independent of a,   the 

optimum is obtained when a = 2.    Using (V-38),   (V-39),   and recalling that VL = 38 FeAL,   VQ = 

a   F  AL,   and N    = 38/a   , o   e o '    o 

7D=38/ —   + 38 + 2(1 - e) a     -^ | a o  a — 1 * 
o 

which yields 77 = 0.13 for a = 6, a = 2, e = l/32, and N = 1. Notice from (V-39) that, if I 

could be made larger, so that V = V. , the damping efficiency in the optimum configuration 

would be 

0.25       . (V-41) 
'U max       2(1 - e) Na 

This efficiency is also obtained whenever the initial energy is small,   so that the system always 

converges in one cycle.    The values of the successive damping impulses are then I.   = — 2      I   . 

Since a    is selected on the basis of the maximum potential variation caused by measurement 

errors,   the only parameter to be determined is the value   e,   i.e.,   the final value I   ,   which should 

be retained after convergence to ensure minimum steady-state fuel consumption and should be 

as small as is compatible with practical requirements. 

VI.   REALIZATION,   SIMULATION,  AND TESTING OF  FLIGHT  SYSTEM 

A.     Logic Design of Controller 

The over-all block diagram of the stationkeeping system is shown in Fig. 12.    The solar 

clock determines the position of the station which is selected by command from ground.    Sun 

and earth sensors and the associated coincidence circuitry determine the satellite position.    The 

longitude difference in sign and absolute value is stored in a memory.    Measurements are made 

twice per orbit at satellite anomalies 180° apart and averaged.    The controller remembers the 

sequence of longitude difference measurements and determines the required thrust level in ac- 

cordance with the laws established in Sec. V.    The thruster firing logic turns the thruster on so 

that the resulting thrust vector is always tangential to the orbit and has an appropriate direction. 

A command from ground can turn the thruster on at any time for the initial orbit adjustments 

(Sec. III-E).    Commands can also be sent to the clock to initiate it to the appropriate day of the 

year (see Appendix A).   The system weight is about 4 pounds and the power consumption is  120 mW. 

1.      Longitude Difference Measurement 

The block diagram of the longitude difference measurement logic is shown in Fig. 13.    The 

inputs are the station and the satellite position signals E    and E_ and P. and P      respectively. 

The purpose of the state memory is to discriminate against wrong sequences such as  P., E_, I', 

E,.    These sequences can occur at the beginning of the stationkeeping experiment and whenever 

a station is changed.    The system will wait until P, or E, followed by E, or P.  is received be- 

fore enabling the longitude counter. 

The state memory also determines the sign of the longitude difference measurement by adding 

algebraically the difference measurements P. and P_,   as results from the flow diagram of Fig. 14. 
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In the Early and Late states the counter counts up.    In the Contrary I state the counter counts 
down until it crosses zero,   then reverses direction and complements the sign register.    The 
counter has an overflow register which determines when the satellite is out of the tracking band. 

The longitude difference measurement is transferred in fixed increments to a secondary 
memory upon receipt of a transfer pulse which is generated after the second measurement and 

the thrusting have been completed.    The secondary memory contains the information "the satel- 
lite is (or is not) in band A, B, C,   or in the acquisition band."    Signal redundancy techniques are 

used to avoid a single spurious pulse bringing the controller into the Acquisition Mode. 

2.      Control Unit 

The block diagram of the control unit is shown in Fig. 15.    Upon arrival of an Acquisition 

signal,  a pulse train is fed to the firing timer,  which opens after the thrust logic has sent an 
Open signal.    The input P? is used to count days,   since this thrust must be applied for two con- 
secutive days.    The opposite thrust is applied when the satellite arrives at the damping band. 
For redundancy and to avoid false signals,   the logic waits for two   B  signals,   or a transition 
from Early to Late,   or vice versa.    When either situation occurs,   the opposite thrust is applied 
for two days;   when the thrusting operation is completed,   the satellite returns to the station 

tracking mode. 
In the tracking mode,   the operation of the controller is determined by the sequences of the 

inputs A, B, C,   together with their "sign" E, L.    The "memory-state diagram" for the control- 
ler in the tracking mode is shown in Fig. 16.    The thrust output is determined by the memory 
state and by the current value of the quantized longitude;   thus several "output states" are con- 
densed in one "memory state" for simplicity of presentation;  the complete output state diagram 
consists of 61 states.    From the acquisition mode the controller goes to the state (Damp - ) if 
it is early and to (Damp +) if it is late.   In these states no damping force is applied whenever the 
satellite is in bands   +A and —A,   respectively.    Whenever there is a partial convergence,   the 
 1 
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Fig. 15.    Block diagram of the controller. Fig. 16.    Memory-state diagram of the controller. 
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sequence -A, +A,-A occurs if the controller is in (Damp-) and the sequence +A,-A, +A if it is 

in (Damp +).    On the transition from the states Converge to the states Wait,  the damping force 
is decreased unless it has already reached its minimum value.    The controller exits from the 

states Converge upon receipt of a  B signal,  and the damping force returns to its maximum value 

upon receipt of the signal Begin,  which happens after two successive C  signals. 
The adaptation memory input is the Decrease signal (Fig. 15).    The damping force is obtained 

by choosing a frequency in the frequency selection matrix,  which is sent to the fixed length firing 
timer.    When the satellite is in bands ±B or ±C,  the force level is established in a similar man- 

ner.    An Inhibit signal prevents the operation of the tracking-control mode when the satellite is 

in Acquisition. 
When both the firing sequence and the longitude difference measurement have been completed, 

a Reset jnd a Transfer pulse are generated and fed to the auxiliary longitude difference memory 

in Fig. 13. 
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START  THRUST 
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3. Thrust Logic 

The thrust logic block diagram is shown 
in Fig. 17. The earth center detector delivers 
a pulse whenever a fixed marker point on the 
satellite periphery is collinear with the earth 
and satellite centers. Since the firing angle of 
the thruster is 18°, the thruster line of action 
is placed 81 ° away from the marker point. 
After the arrival of the earth center pulse, if 
the satellite is early the thruster is turned on 
and remains on until the firing angle counter 

overflows. The sun clock used to measure the 
firing angle delivers 512 pulses per satellite 
spin. If the satellite is late, the thrust must 
oppose the satellite velocity vector. A delay 
of 180° of satellite rotation is therefore intro- 
duced before the thruster is turned on. 

The logic for the Plasma Thrusters differs from this,  in that there are four thrusters lo- 
33 cated 90° away from each other.        The sun clock is used to gate the appropriate thruster,   and 

the 180° delay selects the direction of firing. 

4. Electronic Solar Clock 

In order to compare the satellite and station positions in orbit,   it is necessary to have a solar 

clock, as discussed in Sec. III. 
The difference between the mean and true solar transit times is shown for the year 1969 by 

the smooth curve in Fig. 18.    It may be assumed that this curve is valid for subsequent years, 
since the secular variation of the difference is small during the satellite lifetime.    The clock is 

a sequential network which delays the output of a counter by a time  D  (Fig. 18) as shown in the 
block diagram of Fig. 19.    Two pulses per mean day,   12 hours apart,  start a delay counter which 
counts minutes until its contents equal the contents of the accumulator.    At this time,   the output 
pulses S, or S? are generated and the delay counter is reset and opened until the next pulse from 

Fig. 17.    Thrust logic block diagram. 
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the main counter arrives.    The accumulator contains the amount of delay measured from the 
reference line in Fig. 18.    As shown,  the reference line differs from the mean solar day line by 
17 minutes.    This is taken into account by sending the alarm command at an appropriate time. 
The value stored in the accumulator, which is an up-down counter,  is computed by the sequential 
network shown in Fig. 19.    The staircase curve in Fig. 18 shows the actual correction obtained 
with this logic.    The approximation has been selected by a trial-and-error procedure,  with a 

view to simplifying the logic design.    Since the information contained in the solar clock logic 
must be preserved when the satellite is in shadow,   and the main counter must continue to oper- 

ate throughout the shadow period,  the system is powered from the solar bus or a battery. 
The most important function performed by command from ground is the selection of the sta- 

tion.    This is done by resetting the main counter at 9 a.m.  local mean solar time of the station 
to be tracked,   since the satellite position is measured at 9 a.m.  satellite true solar time.    Since 
the daily correction is obtained as a delay from a reference line  17 minutes earlier than the 
mean solar day,   the time at which the main counter must be reset is 8:43 a.m.   station mean 
solar time.    The longitude of the station,   the longitude of the command site,  and the propagation 
delays are known and therefore determine the site mean solar time at which the command,   which 
is called ALARM,   must be sent.    An error in the time at which the ALARM is sent only causes 
an offset error in the operation of the control system.    The magnitude of this offset is obviously 
1° of longitude per 4 minutes of time error,   so that very reasonable accuracies can be achieved. 
The command system of the solar clock also performs the auxiliary function of choosing the initial 
conditions for the sequential network and for the accumulator.    This is necessary because the 
actual date of launch is not exactly known beforehand and is also useful as an additional element 
of flexibility in the system. 

I 1 
B.    Computer Simulation and Flight System Testing 

An extensive computer simulation study was carried out during the program,"''' to yield es- 
timates (1) of the fuel consumption when operating with the cold gas thrusters in the presence of 
random measurement errors,   and (2) of the dynamic behavior.    In the course of this work,   it 
was found that it was advantageous to increase the width of the  H longitude band from 2° to 4°, 
since this resulted in lower fuel consumption in the presence of random errors.    This modifica- 
tion was therefore incorporated in the hardware design. 

The Stationkeeping Simulation program performs the following operations for each orbit: 

(1)    Integration of the equation of motion with earth tesseral harmonics through 
third order. 
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(2) Generation of the coincidence pulses at the appropriate sun ephemeris 
time, 

(3) Determination of the satellite position,   using the reconstruction of the 
sun ephemeris implemented by the on-board logic,  or by the special 
sensor, 

(4) Adding random error (uniformly distributed,   uncorrelated,   ±0.5°) to 
the measurement, 

(5) Determination of the thrust level required for the next orbit,   using a 
subroutine which duplicates the behavior of the finite-state controller. 

The outputs are the osculating orbital elements for each orbit and the fuel consumption.    It 

is possible to simulate operation with both the Plasma and Cold Gas Thrusters.    This simulation 

program can take as inputs the orbital elements determined by radar tracking. 

A variable step-size Hamming's integration routine was used.    It is important to use a var- 
iable step-size method because of the discontinuous nature of the forces involved.    Much work 
was done to study the effect of integration errors.t   This is most important,   since the number of 
successive integrations is quite large when the simulation is carried on for the equivalent of five 
years of orbital life.    In order to handle discontinuous thrust properly,   one would like to use a 
small step size;  this,  however,   increases the number of necessary integration steps.    An ap- 
propriate compromise was found and its validity checked by comparing the results given by 
Hamming's and Runge-Kutta variable step-size routines. 

An extensive analysis of fuel consumption was made for different values of the stationkeeping 
longitude.    Uniformly distributed uncorrelated noise was used,   since it seemed a sufficiently 

severe test for the system. 
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Fig. 20.    Simulation results at the worst longitude. Fig. 21.    Simulation results at the unstable point. 

The design constraint of not being able to measure the angular drift except in very largely 
quantized longitude bands mades the system rather sensitive to fast,  uncorrelated noise.    The 
reason for this is that the controller can go very rapidly through the damping cycle,   as a conse- 
quence of spurious sequences of signals like +A, —A, +A or—A, +A.-A.    As is seen in Sec. V,   the 

controller responds to this sequence by switching to a lower level damping force.    Figures 2 0 
and 21 show typical computer runs for stationkeeping at the worst longitude (~295° East) and at 

the unstable point (~259° East) with the Cold Gas Thrusters,   with random error.    In most cases, 

the longitudinal excursion is within ±3 degrees of the station. 
Several runs were made to estimate the fuel consumption in the presence of random errors. 

As is to be expected,   the fuel consumption is a function of the stationkeeping longitude.    Typically, 

t E. H.Swenson,  unpubl ished report. 
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the system will use 2.6kg when stationkeeping for five years near a point of maximum tangential 

force,  and 0.6 kg near the unstable point. 
Testing of the system was carried out by exciting the earth and sun sensors using a special- 

purpose Simulator.    This device simulated sequences of sun and earth pulses at the spin rate of 
the satellite.    Circular orbital motion was simulated by changing the sun-earth phase uniformly 

in time.    The Simulator had provisions to change the orbital speed and to "jump" to any point in 
orbit using pushbuttons.    The stationkeeping system clock could be sped up,   so that the Day 
Pulses would occur with variable repetition rates,   down to as little as 1 minute.    In this manner, 

by measuring the time elapsing between the Day Pulses E,, E2,  which were available externally 
via telemetry,  the "satellite position" on the simulator could be changed so that the sensor co- 

incidences P., P? would occur at the appropriate times with respect to the clock.    By changing 
the time between E. and P,  (E_, P_ ) for a given clock speed,  the system measures different lon- 

gitudes.    This type of checkout was conducted also during thermal-vacuum tests. 
A second technique,   which was most useful in testing the integration of the sensors and logic 

systems,  was employed in which the satellite was actually spinning.    The light from a lamp sun 
simulator (appropriately folded by mirrors) was used to excite the sun sensors.    The earth image 
was projected on screens in such a manner as to obtain approximately the right earth albedo. 
The earth image could be moved (discontinuously) so that sensor coincidences could be obtained 
at the right time with respect to the clock pulses also in this case. 

VII.    EARLY FLIGHT RESULTS AND COINCIDENCE  ANALYSIS 

The longitude history of the satellite from 26 September 1968 until 25 June 1969 is shown 
in Fig. 22.    The Automatic Stationkeeping System operated from 22 December 1968 to the end of 

the period.    Telemetry was recorded daily from the Automatic System longitude sensors.    The 

ephemeris transit time has been subtracted from the sensor data. 

EXPERIMENTS   WITH  AUTOMATIC   SYSTEM 

CHECK  OF  PLASMA THRUSTERS 

FREE   DRIFT 

DESIGN 
ACCURACY: ±2° 

OCT    NOV     DEC      JAN     FEB     MAR    APR     MAY     JUN     JUL     AUG 

1968 I9G9 

Fig. 22. Longitude history of LES-6 since 
launch, as measured by the on-board equip- 
ment daily (smoothed data). 

Orbit determinations were made (independently of the sensor data) once a month,   and more 
frequently for calibration purposes at the beginning of the experiment.    These are indicated by 
the open circles in Fig. 22. 

During the period from launch to 22 December 1968,   the system operated mostly in the 
"Ground Command" mode.    During this time the following operations were performed:    (a) initial 

trimming of the orbit,   using the Cold Gas Thrusters,   (b) experimentation with the Plasma Thrust- 
ers,   to determine their thrust level,  and (c) experimentation with the Automatic System,   closing 
the loop for brief periods of time and monitoring its behavior continuously. 
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All operations were performed successfully. The initial orbit (semimajor axis 42,068 km; 
eccentricity 0.00226; drift rate +1.21°/day) was trimmed to a nearly synchronous orbit (semi- 
major axis 42,159 km; eccentricity < 0.0001; drift rate 0.051 °/day). The thrust obtained from 
the Gas Thrusters was found to be within 10 percent of the ground measurements. 

The Plasma Thrusters have established a record of operation in orbit for electric propulsion 
systems.    The measurement of their performance required long periods of operation,   and thus 
elimination of the natural perturbations from the motion.    This is because the effect of the Plasma 
Thrusters is quite comparable in magnitude to that of the geopotential perturbation.    The thrust 

33 value obtained was very close to the value measured on the ground. 
The quiet period from 12 November to 22 December was necessary to check our orbit deter- 

mination techniques by predicting motion under the effect of the natural perturbations only.    Our 
30-foot antenna and receiver installation can measure satellite range (via time delay measure- 
ments through the satellite repeater) very accurately,   besides measuring azimuth and elevation. 

We now believe that our orbit determination accuracy is of the order of 0.3 km in semimajor axis 
(typical 3CT value). 

The Automatic System was turned on for a long-term experiment on 23 December 1968.    At 
this time the satellite had a drift rate of 0.062 deg/day west.    At this longitude the geopotential 
perturbation tends to move the satellite west.    The Alarm Command was sent to locate the station 
at about 80° West, so that a C-band measurement would be made by the on-board system.    This 
resulted in slowing down the satellite,   as seen from Fig. 22 and recorded by the orbit determina- 

tions of 17 January and 20 February (drift rate of 0.026 deg/day).    If the Automatic System had 
not operated,   the drift rate at this time would have been about 0.5 deg/day.    On 18 February the 
station was moved to 92.5° West longitude. 

The data obtained from the sensors were 
analyzed to test several hypotheses about their 
distribution. Figure 2 3 shows the actual un- 
smoothed data for the period 8 January to 5 
March 1969. 

To test the validity of the "weak-coupling" 
approximation to the drift motion, we made 
least-square fits of polynomials of time to the 
data. The results, summarized in Table II, 
show that the unbiased estimate of the variance 
of the residuals is either increased or not sig- 
nificantly decreased in going from a second 

degree to a third degree fit. Thus the weak 
coupling approximation, which predicts a near 

parabolic behavior for small longitude excur- 

sions[see Eq. (11-35)], is supported. The sec- 
ond degree least square fit is seen in Fig. 2 3 
(continuous curve). 

Next we studied the residuals,   having eliminated the trend via the parabolic least-square fit. 
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in a typical period of operation. 

Stationarity:—   The variance of the residuals is different in the different periods,   as 
shown in Table II.    Furthermore,   one can see periods in which the data scatter is greater,   even 
though  the daily thrust  has not changed compared to a relatively quiet  period (typically,   the 
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TABLE II 

VARIANCE  OF RESIDUALS 

Linear 3arabolic 3rd Degree 4th Degree 
Fit Fit Polynomial Polynomial 

Period (sec) (sec) (sec) (sec) 

First (22 Oct.-12 Nov.) 15.15 11.42 10.93 11.59 

Second (12 Nov.-15 Dec .) 32.32 28.87 29.16 31.67 

Third (23 Dec.-7 Jan.) 61.98 62.03 63.05 64.40 

Fourth (8 Jan.-13 Feb.) 39.63 33.04 32.26 32.16 

third and fourth periods).    The difference in variance strongly supports the hypothesis that the 
residuals are not weakly stationary (and thus not stationary) in time. 

Whiteness:—   We applied Anderson's modified test for whiteness,   which is applicable 
if the residuals are uncorrelated.    This is done by computing the autocorrelation for unity lag 
for the sample from the time series.    The results for the autocorrelation function are shown in 
Figs. 24 through 27.    We also applied the lJurban Watson test for whiteness to the different periods. 
To gain some intuitive "feel" for the behavior of the autocorrelation function for truncated time 
series obtained from a "white" process,   we repeated the analysis for samples obtained from 

23  DEC 1968 0 
TO   7   JAN   1969 

1    1 
6 

l 1 

^ 

1 1 

i           i 

<! i i 

0 2 4 6 e 

LAG (days) 

Fig. 26.    Autocorrelation of the sensor errors 
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white Gaussian noise and uncorrelated equiprobable noise.    A typical result is shown in Fig. 28. 

We conclude that our analysis of the data available so far supports the hypothesis that the resid- 

uals are a white random process. 

Ilystograms:—   To obtain some information on the underlying probability function,   we 
prepared hystograms of the residuals.    The hystograms are often bimodal;   only in periods III 
and IV do the hystograms show a behavior reminiscent of the Gaussian curve.    In order to inter- 
pret the meaning of the residuals,   it is important to note that the telemetry sampling rate is 
about 20 seconds.    Thus there is an intrinsic uncertainty of about 0.1 degree in the measurement. 
The information on the distribution will be improved as the available measurement sample in- 
creases in time. 

VIII.    CONCLUSIONS 

The Automatic Orbit Control system of LKS-6 had operated successfully for several months 
at the time of this writing.    The main conclusions to be drawn from this experience are,   in our 
opinion: 

(1) It is possible to automatically control synchronous orbits with modest 
equipment complexity.    This leads to simplification of ground operations 
and reduction in operating costs of networks of synchronous satellites. 

(2) The accuracy of control,   which in the present experiments appears to be 
of a few degrees,   should improve in future systems. 

(3) From a control-theoretic point of view,   it is important to notice the 
advantages of symmetric measurements and thrusting,   which ensure 
the stability of the coordinates which are not controllable when the sat- 
ellite longitude is sampled once per day. 

The data presented here describe the first few months of operation of the LKS-6 automatic 
system, using the Plasma Thrusters. Kxperiments of station transfer and of prolonged opera- 
tion with the (ias Thrusters will be carried out in the near future. 
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In the author's opinion,  methods of Automatic Orbit Control will be used extensively on 

tomorrow's synchronous satellites.    This judgment is based on the fact that the number of sat- 

ellites in synchronous orbit will almost certainly increase greatly.    Stationkeeping requirements 

will then be dictated by the need to avoid interference between synchronous satellites.    The need 

for Automatic Orbit Control is not limited to the synchronous orbit.    Both circular nonsynchro- 

nous and general elliptic earth orbits are perturbed by the geopotential harmonics,  the sun and 

the moon.    The system that has been flown in LES-6 is only a beginning;  more accurate on-board 

control of synchronous orbits should be possible on the next generation of satellites.    We also see 

these ideas extended and applied to more complex problems of orbit control. 
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APPENDIX A 

THE SOLAR TIME ON AN ARBITRARILY ORIENTED SATELLITE 

If it is assumed that the earth's and satellite's spin axes are parallel,   the transit of the sun 

on corresponding meridian planes of the two bodies occurs at times inversely proportional to 
their spin rates.    This is no longer so if the spin axes are not parallel.    The variation of merid- 
ian transit time has two major causes:    the inclination of the plane of the elliptic to the equatorial 

body of the earth or satellite,  and the ellipticity of the earth's orbit,  with which the satellite's 
orbit around the sun can be assumed to coincide in our approximation. 

In the following, formulas are given for 
the difference between mean solar time and 
true solar time measured on a satellite arbi- 
trarily oriented in an orbit of any inclination, 
eccentricity, and period. The satellite or- 
bital inclination does not affect the satellite 
solar time unless errors are made in sensing 
the earth. The formulas take the earth's orbit 
eccentricity into account to second order, and 
arc easily extended to higher order. 

The   reference  system   used   is shown in 
Fig. A-l.     The  unit   vectors   i,j are   in   the 
earth's equatorial plane, and  i  coincides with 
the  direction of the earth's node.    The  triad 
i,j,k is right-handed.    The ecliptic plane E   is 

defined bv the direction cosines, e{u., u.,, u„}; 1      2      3 
a   is  the angle  between the  ecliptic plane   K 

EARTH S 
LINE OF NODES 

Fig.A-1.    Satellite reference system. 

and the satellite equatorial plane,   U,   not shown in the figure;   ft   is the angle between plane   U 
and the orbital plane;   e and c     are the eccentricities of the satellite and earth orbits,   respec- 
tively;   ui      27r rad/sidereal year;   fi = satellite orbital radian frequency;  <p,   = 102.25°  = argument 

of perihelion measured from the earth' s nodal line. 
The coincidence in time between the output of the earth and sun sensor will occur whep the 

projections of the satellite and of the sun differ by  6,   which is the angular separation between 
the earth and sun sensor,  and an integer number of rotations. 

Then the times of successive coincidences are found to be the solutions of the equation 

tan     [cos (a) tan (wt + <p, )] + 
2e„ sin (wt) cos (a) _, 

—= =    = tan     [cos (/3) tan (fit + <p go 
1 - sin   (a) sin   (cot) 

2e sin (fit) cos (ft) 

1 - sin2 (ft) sin2 (fit) 
+ 6 + 2nir (A-l) 

No loss in generality occurs if one takes 6=0,   which displaces the time reference. 
Let us now take as a reference for Eq. (A-l) that at which the first coincidence for t      0, 

n      0 occurs at perihelion for a satellite spin or yaw axis normal to the earth's equatorial plane. 

Then u 0 and u    -   1  in (A-2) and from (A-l ), 

so 
-1 .cos la ) . , tan        TOT tan w, 1 cos (ft) \v 

(A-2) 
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The expression (A-2) is substituted into (A-l).    The times of coincidence are the solutions 

of Eq. (A-l) in the unknown t, for different integer values of n. 

It is of interest to consider some special cases and to rewrite Eq. (A-l) in ways more con- 

venient for the applications. 

For a synchronous satellite,  the quantities  u  and  n  can be expressed in rad/mean solar 

day as w = 2TT| ,  Q - 27r(l + £ ),  and £   = 1/365.27.    Measuring the time in mean solar days,  it is 

more convenient to consider the angular difference A between the satellite and sun projection on 

plane  U at the end of each successive mean solar day.    Then, 

. 2eF sin (a>t) cos (a ) 
A = <p    -tan"    [cos (a) tan(2ir£ n + (p. )] -    = =       , (A-3) 

1 - sin   (a ) sin   (wt) 

where cp     is given by the right side of (A-l) with Q = 27r(l + £ ) and with ip       given by (A-2). 

For a synchronous equatorial satellite in a circular orbit with its spin or yaw axis perpen- 

dicular to the equatorial plane of the earth, Eq. (A-3) yields an approximate expression for the 

sun transit time correction on the earth A„,  being 

0 = 0 ' £   a  1/365.2 

e 0 ' ^h s 102.25° 

'l 
= u2 = 0 - eE a  0.01675 

a = 1 s 23. 45° u, = i 

. 2t _ sin (2ir| n) cos (77 ) 
A„ = 2TT£ n + if       - tan      [cos (77 ) tan (ZTT^ n + <p,)} -  - ~—    ^       . (A-4) 

^ so 1 - sin   (rj ) sin   (2TT^ n) 

l'"or a synchronous equatorial satellite in a circular orbit with its spin or yaw axis tilted 

around the earth's line of nodes,   the foregoing values are used,  except that,   <i   being the angle 

of tilt, 

u. = 0 1 

u2 = - sin (4 ) 

cos (a) - sin (JJ ) sin {i}.) + cos (77 ) cos (1!) = cos (77 — 4 ) 

and 

2f F sin (27r| n) cos (77 —4) 
Ai/j = 2TT£ n + (/>       - tan"    [cos (77-1/) tan (2?r£ n + </>.)] - ~—       ^—          .  (A-5) 

so n 1 - sin   (TJ - ip) sin   (2>T| n) 

Comparing this equation with (A-4).  one sees that a rotation of the yaw axis around the 

earth's line of nodes is equivalent to a rotation of the plane of the ecliptic around the saine line. 

This means that the satellite solstices and equinoxes take place on the same day as the earth's, 

as is obvious from the fact that the lines of nodes of satellite and earth still coincide.     Plots of 

angular displacement vs time of the year for this case are shown in Fig. A-2. 

For a synchronous equatorial satellite in a circular orbit with its yaw axis tilted around the 

normal to the earth's line of nodes,  and with  x  being the angle of tilt, 

u. = — sin(x)      .       "2"°      •       u, = cos(x)      .       cos (n ) = cos (x) cos (rj ) 

so 



Fig.A-2.    Solar time as seen on the satellite 
for different angles of tilt. 

and therefore 

A    = + 2TT| n + <p      - tan      [cos (r; ) cos (x) tan (27r| n + </>,)] 
X so n 

2( ,, sin (2?r£ n) cos (x) cos (rj ) 

2 2 2 2 cos   (2TT£ n) + cos   (?) ) cos   (x) sin   (27r£ n) 
(A-6) 

From (A-l) and tt = 2TT(1 + £ ),  the eccentricity of the satellite orbit is seen to contribute 

the term 

2e  sin[27r(l  + £ ) n] cos (ft) 

1 - sin2 03) sin2 [2T(1 + $ ) n] 
(A-7) 

This confirms that the eccentricity effect can be eliminated to second order in  (   by taking 

two measurements of satellite solar time at times n and n + (1/2),  being 

A'(n) s - A'[n + ,1, 

since   £    is small. 
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APPENDIX B 

THE OBSERVABILITY AND CONTROLLABILITY MATRICES 

FOR THE SAMPLED CASE + 

The sampled case equations are given by 

x(kT + T) = A  x(kT) + B u(kT) (B-l) 

and the measured vector is 

y(k) = Cx(k)      , (B-2) 

where the matrices A    and B    are given by Eqs. (IV-20),   (IV-21),   (IV-22) for the different 

cases. 

The system is again factored into two parts and we can examine both separately. 

i.       Case T = 27r/a> (sampling once per orbit) 

If u2      0, 

£i 

0        0        0        0 

lilt 

0 0 0 0 

0 0 0 0 

(B-3) 

This is singular so that the sampled system is not controllable from u..    (Actually,  we coulc 

have inferred this from the continuous case.) 

Let us check the case T -  ZTT/W and u.  = 0.    Here we have 

!S2 
- i>ir 

U) 

-12TT 18TT -24F 

(H-4) 

and we see that sampling at the rate T = 2it/u has destroyed controllability from u?. 

If we wish to check controllability from both u.  and u    together,   the relevant matrix is 

tFrom Ref. 27. 
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0 0 

K (B-5) 

- 6TT 
•127T 0 

18TT 

to 

Z47T 

which is also singular.    Hence,   even with both u,  and u    available one cannot control if only 

one thrust per orbit is used. 

The controllability of x, and x,  from u, is revealed by 

K-> 
0 0 

1 1 
(B-6) 

which is singular and hence indicates a lack of controllability. 

The observability picture is as follows.     From x,  we have an observability matrix 

h 

10        0        0 

0 0 0 

10 0 0 

10 0 0 

(B-7) 

From x- we have an observability matrix of the form 

^2 

0 0        1 

12TT 0 

Z4- 0        1 

36TT 0        1 

•bit 

•iZir 

18TT 

(B-8) 

ind from x.   and x. together- we have 
l 3 
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0        0 

0        0 

12TT 0 

0 0 

6TT 

(B-9) 

24TT 0 
\Z-n 

0 0 

-36TT 0        1 
18TT 

Clearly none of these matrices is of rank 4 so we cannot observe the inplane components of the 

motion using one observation per orbit. 

The out-of-plane situation is revealed by 

±A 
1      0 

1      0 

so we see that this motion is not observable either. 

(B-10) 

ii.      Case T - 7r/co (sampling twice per orbit) 

In this ease,   the controllability matrices K . ,   Kn.   and K, take the form 
•' —1    —2 —3 

0 0 0 0 

^ 

1 

-4 —4 — 0—0 
CO to 

0 0 

(B-il 

K2 

4_ 
u 

- 37T — 67T 

CO CO 

-9TT 

CO 

7 

9n 

(B-12) 

ss 



co 
0 0 

4_ 
CO 

K3 

- 4 -3TT 

CO 

-6TT -4 
CO 

-9TT 

CO 

- 9TT 

to 

(B-l S) 

-7 

Both K.  and K_ are singular,   but K    is of rank 4 (the first four columns arc independent).    Hence 

it is possible to control the in-plane motion by thrusting only twice per orbit,   provided that one 

has both tangential and radial thrusting capability. 

I'1 or the out-of-plane motion,   the situation is not improved,   however,   because 

*4 

0      0 

-1     1 

and is not of rank 2. 

As far as observability is concerned,   we have 

0        0        0 

U 
7 0 0 

10        0        0 

7 0 0 

-B-14) 

(B-1S) 

0 0 10 

•6TT 

12- 0 

5TT 

-6TT 

CO 

(B-16) 

18- 0 
9TT 
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L3 

0 0 

-6, Z± 

• 1 2TT        -8a; 1 

18- -127TCO 1 

-37 
w 

0 0 0 

-6TT 

0 — 

-9TT 

a; 

lB-17) 

Only matrix L,  is of rank 4 (the first four rows are independent).    Hence the in-plane motion 

is observable,   sampling only twice per orbit if both angle and altitude can be measured. 

l''or the out-of-plane motion,   we need to examine 

L4 

1      0 

1      0 

and we see that this part of the system is still not observable. 

iii.    Case T = n/Zus (sampling four times per orbit) 

The controllability matrices K.,   K?,   and K_   are now given by 

(13-18) 

ill 

I 

a.' 

-2 

0 

-1        -2 

0 

(B-19) 
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2 4_ 
a) 

(-3;:  +  8) 
2 a; 

-3TT (-9-- 8) 
2co 

6TT 

(15-20) 

7 

0 0 

(-3TT   f  8) 
2 a) 

ill 
a) 

_2 (-9TT - 8) 
a) 2a) 

-6 

[H-21) 

In this case,   K, and K. are of rank 4 hut K.   is not.    Thus,   controlling the  ()   dependent 
—2 —3 —1 

variable only lets one control the entire state if thrusting is done four times per orbit. 

For the out-of-plane motion,   K    takes the form 

1 
~ 

0 
a) 

0 - 1 
J 

i<4 

Thus this motion is controllable. 

To check observability in the four tunes pet- orbit sampled case,   we need 

(H-22) 

I.. 

0 0 0 

4 — 0 — 
CO 

0        1 

(B-i- 
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L2 

0 1 

3TT + 6)       —- 

• 6TT 

^9TT - 6   

2 1 (-37T + 

— 3JT 

1        (-97T- 8) 

(H-24) 

(—3TT + 6) 

- bir 

0 0 

— 0 

0 0 

-4 

9?r - 6   

(- 3.7T   +   8) 

2OJ 

4 
a; 

-3TT 

2 

(-97T-  8) 
2~uJ 

(B-25) 

Clearly,   L.   is not of rank 4 so we cannot observe the state by looking at altitude alone.    How- 

ever,   L_ and L    are of rank 4,   so observation from  G,   and from   r  and  G   together,   is possible. 

The out-of-plane motion is covered by 

'-M 

1 0 

0 
1 

(B-26) 

and it is observable from four samples of  tp  per orbit. 
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